Rule-Based EEG Classifier Utilizing Local Entropy of Time–Frequency Distributions
Electroencephalogram (EEG) signals are known to contain signatures of stimuli that induce brain activities. However, detecting these signatures to classify captured EEG waveforms is one of the most challenging tasks of EEG analysis. This paper proposes a novel time–frequency-based method for EEG ana...
Hlavní autoři: | Jonatan Lerga, Nicoletta Saulig, Ljubiša Stanković, Damir Seršić |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
MDPI AG
2021-02-01
|
Edice: | Mathematics |
Témata: | |
On-line přístup: | https://www.mdpi.com/2227-7390/9/4/451 |
Podobné jednotky
-
Block-Adaptive Rényi Entropy-Based Denoising for Non-Stationary Signals
Autor: Nicoletta Saulig, a další
Vydáno: (2022-10-01) -
Method for Automatic Estimation of Instantaneous Frequency and Group Delay in Time–Frequency Distributions with Application in EEG Seizure Signals Analysis
Autor: Vedran Jurdana, a další
Vydáno: (2023-05-01) -
A novel approach to extracting useful information from noisy TFDs using 2D local entropy measures
Autor: Ana Vranković, a další
Vydáno: (2020-04-01) -
Quantitative EEG based on Renyi Entropy for Epileptic Classification
Autor: HADIYOSO Sugondo, a další
Vydáno: (2019-05-01) -
Rényi Entropy and Rényi Divergence in Product MV-Algebras
Autor: Dagmar Markechová, a další
Vydáno: (2018-08-01)