Rule-Based EEG Classifier Utilizing Local Entropy of Time–Frequency Distributions
Electroencephalogram (EEG) signals are known to contain signatures of stimuli that induce brain activities. However, detecting these signatures to classify captured EEG waveforms is one of the most challenging tasks of EEG analysis. This paper proposes a novel time–frequency-based method for EEG ana...
Main Authors: | Jonatan Lerga, Nicoletta Saulig, Ljubiša Stanković, Damir Seršić |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
MDPI AG
2021-02-01
|
סדרה: | Mathematics |
נושאים: | |
גישה מקוונת: | https://www.mdpi.com/2227-7390/9/4/451 |
פריטים דומים
-
Block-Adaptive Rényi Entropy-Based Denoising for Non-Stationary Signals
מאת: Nicoletta Saulig, et al.
יצא לאור: (2022-10-01) -
Method for Automatic Estimation of Instantaneous Frequency and Group Delay in Time–Frequency Distributions with Application in EEG Seizure Signals Analysis
מאת: Vedran Jurdana, et al.
יצא לאור: (2023-05-01) -
A novel approach to extracting useful information from noisy TFDs using 2D local entropy measures
מאת: Ana Vranković, et al.
יצא לאור: (2020-04-01) -
Quantitative EEG based on Renyi Entropy for Epileptic Classification
מאת: HADIYOSO Sugondo, et al.
יצא לאור: (2019-05-01) -
Rényi Entropy and Rényi Divergence in Product MV-Algebras
מאת: Dagmar Markechová, et al.
יצא לאור: (2018-08-01)