Rule-Based EEG Classifier Utilizing Local Entropy of Time–Frequency Distributions

Electroencephalogram (EEG) signals are known to contain signatures of stimuli that induce brain activities. However, detecting these signatures to classify captured EEG waveforms is one of the most challenging tasks of EEG analysis. This paper proposes a novel time–frequency-based method for EEG ana...

詳細記述

書誌詳細
主要な著者: Jonatan Lerga, Nicoletta Saulig, Ljubiša Stanković, Damir Seršić
フォーマット: 論文
言語:English
出版事項: MDPI AG 2021-02-01
シリーズ:Mathematics
主題:
オンライン・アクセス:https://www.mdpi.com/2227-7390/9/4/451