Power Graphs of Finite Groups Determined by Hosoya Properties

Suppose <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula> is a finite group. The power graph represented by <...

Full description

Bibliographic Details
Main Authors: Fawad Ali, Bilal Ahmad Rather, Anwarud Din, Tareq Saeed, Asad Ullah
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/2/213
_version_ 1797480525208748032
author Fawad Ali
Bilal Ahmad Rather
Anwarud Din
Tareq Saeed
Asad Ullah
author_facet Fawad Ali
Bilal Ahmad Rather
Anwarud Din
Tareq Saeed
Asad Ullah
author_sort Fawad Ali
collection DOAJ
description Suppose <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula> is a finite group. The power graph represented by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">P</mi><mo>(</mo><mi mathvariant="script">G</mi><mo>)</mo></mrow></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula> is a graph, whose node set is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula>, and two different elements are adjacent if and only if one is an integral power of the other. The Hosoya polynomial contains much information regarding graph invariants depending on the distance. In this article, we discuss the Hosoya characteristics (the Hosoya polynomial and its reciprocal) of the power graph related to an algebraic structure formed by the symmetries of regular molecular gones. As a consequence, we determined the Hosoya index of the power graphs of the dihedral and the generalized groups. This information is useful in determining the renowned chemical descriptors depending on the distance. The total number of matchings in a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Γ</mi></semantics></math></inline-formula> is known as the <i>Z</i>-index or Hosoya index. The <i>Z</i>-index is a well-known type of topological index, which is popular in combinatorial chemistry and can be used to deal with a variety of chemical characteristics in molecular structures.
first_indexed 2024-03-09T22:01:17Z
format Article
id doaj.art-2187eb18fba443f19ec0a998661cf5d6
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-09T22:01:17Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-2187eb18fba443f19ec0a998661cf5d62023-11-23T19:47:48ZengMDPI AGEntropy1099-43002022-01-0124221310.3390/e24020213Power Graphs of Finite Groups Determined by Hosoya PropertiesFawad Ali0Bilal Ahmad Rather1Anwarud Din2Tareq Saeed3Asad Ullah4Institute of Numerical Sciences, Kohat University of Science & Technology, Kohat 26000, PakistanMathematical Sciences Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab EmiratesDepartment of Mathematics, Sun Yat-sen University, Guangzhou 510275, ChinaNonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi ArabiaDepartment of Mathematical Sciences, University of Lakki Marwat, Lakki Marwat 28420, PakistanSuppose <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula> is a finite group. The power graph represented by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">P</mi><mo>(</mo><mi mathvariant="script">G</mi><mo>)</mo></mrow></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula> is a graph, whose node set is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula>, and two different elements are adjacent if and only if one is an integral power of the other. The Hosoya polynomial contains much information regarding graph invariants depending on the distance. In this article, we discuss the Hosoya characteristics (the Hosoya polynomial and its reciprocal) of the power graph related to an algebraic structure formed by the symmetries of regular molecular gones. As a consequence, we determined the Hosoya index of the power graphs of the dihedral and the generalized groups. This information is useful in determining the renowned chemical descriptors depending on the distance. The total number of matchings in a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Γ</mi></semantics></math></inline-formula> is known as the <i>Z</i>-index or Hosoya index. The <i>Z</i>-index is a well-known type of topological index, which is popular in combinatorial chemistry and can be used to deal with a variety of chemical characteristics in molecular structures.https://www.mdpi.com/1099-4300/24/2/213molecular structurechemical graphspower graphsfinite groupsHosoya indexHosoya polynomial
spellingShingle Fawad Ali
Bilal Ahmad Rather
Anwarud Din
Tareq Saeed
Asad Ullah
Power Graphs of Finite Groups Determined by Hosoya Properties
Entropy
molecular structure
chemical graphs
power graphs
finite groups
Hosoya index
Hosoya polynomial
title Power Graphs of Finite Groups Determined by Hosoya Properties
title_full Power Graphs of Finite Groups Determined by Hosoya Properties
title_fullStr Power Graphs of Finite Groups Determined by Hosoya Properties
title_full_unstemmed Power Graphs of Finite Groups Determined by Hosoya Properties
title_short Power Graphs of Finite Groups Determined by Hosoya Properties
title_sort power graphs of finite groups determined by hosoya properties
topic molecular structure
chemical graphs
power graphs
finite groups
Hosoya index
Hosoya polynomial
url https://www.mdpi.com/1099-4300/24/2/213
work_keys_str_mv AT fawadali powergraphsoffinitegroupsdeterminedbyhosoyaproperties
AT bilalahmadrather powergraphsoffinitegroupsdeterminedbyhosoyaproperties
AT anwaruddin powergraphsoffinitegroupsdeterminedbyhosoyaproperties
AT tareqsaeed powergraphsoffinitegroupsdeterminedbyhosoyaproperties
AT asadullah powergraphsoffinitegroupsdeterminedbyhosoyaproperties