Machine learning analysis of extreme events in optical fibre modulation instability

Real-time characterisation of nonlinear processes in the time domain is challenging. Here, Närhi et al. show that machine learning techniques can help overcome this limitation and use them to infer time-domain properties of optical fibre modulation instability from spectral intensity measurements.

Bibliographic Details
Main Authors: Mikko Närhi, Lauri Salmela, Juha Toivonen, Cyril Billet, John M. Dudley, Goëry Genty
Format: Article
Language:English
Published: Nature Portfolio 2018-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-018-07355-y
_version_ 1818956979119325184
author Mikko Närhi
Lauri Salmela
Juha Toivonen
Cyril Billet
John M. Dudley
Goëry Genty
author_facet Mikko Närhi
Lauri Salmela
Juha Toivonen
Cyril Billet
John M. Dudley
Goëry Genty
author_sort Mikko Närhi
collection DOAJ
description Real-time characterisation of nonlinear processes in the time domain is challenging. Here, Närhi et al. show that machine learning techniques can help overcome this limitation and use them to infer time-domain properties of optical fibre modulation instability from spectral intensity measurements.
first_indexed 2024-12-20T11:02:33Z
format Article
id doaj.art-2189e5907a1e496d9adc09f2e86e99a5
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-20T11:02:33Z
publishDate 2018-11-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-2189e5907a1e496d9adc09f2e86e99a52022-12-21T19:42:58ZengNature PortfolioNature Communications2041-17232018-11-019111110.1038/s41467-018-07355-yMachine learning analysis of extreme events in optical fibre modulation instabilityMikko Närhi0Lauri Salmela1Juha Toivonen2Cyril Billet3John M. Dudley4Goëry Genty5Tampere University of Technology, Laboratory of PhotonicsTampere University of Technology, Laboratory of PhotonicsTampere University of Technology, Laboratory of PhotonicsInstitut FEMTO-ST, Université Bourgogne Franche-Comté, CNRS UMR 6174Institut FEMTO-ST, Université Bourgogne Franche-Comté, CNRS UMR 6174Tampere University of Technology, Laboratory of PhotonicsReal-time characterisation of nonlinear processes in the time domain is challenging. Here, Närhi et al. show that machine learning techniques can help overcome this limitation and use them to infer time-domain properties of optical fibre modulation instability from spectral intensity measurements.https://doi.org/10.1038/s41467-018-07355-y
spellingShingle Mikko Närhi
Lauri Salmela
Juha Toivonen
Cyril Billet
John M. Dudley
Goëry Genty
Machine learning analysis of extreme events in optical fibre modulation instability
Nature Communications
title Machine learning analysis of extreme events in optical fibre modulation instability
title_full Machine learning analysis of extreme events in optical fibre modulation instability
title_fullStr Machine learning analysis of extreme events in optical fibre modulation instability
title_full_unstemmed Machine learning analysis of extreme events in optical fibre modulation instability
title_short Machine learning analysis of extreme events in optical fibre modulation instability
title_sort machine learning analysis of extreme events in optical fibre modulation instability
url https://doi.org/10.1038/s41467-018-07355-y
work_keys_str_mv AT mikkonarhi machinelearninganalysisofextremeeventsinopticalfibremodulationinstability
AT laurisalmela machinelearninganalysisofextremeeventsinopticalfibremodulationinstability
AT juhatoivonen machinelearninganalysisofextremeeventsinopticalfibremodulationinstability
AT cyrilbillet machinelearninganalysisofextremeeventsinopticalfibremodulationinstability
AT johnmdudley machinelearninganalysisofextremeeventsinopticalfibremodulationinstability
AT goerygenty machinelearninganalysisofextremeeventsinopticalfibremodulationinstability