Loop equation in Lattice gauge theories and bootstrap methods

In principle the loop equation provides a complete formulation of a gauge theory purely in terms ofWilson loops. In the case of lattice gauge theories the loop equation is a well defined equation for a discrete set of quantities and can be easily solved at strong coupling either numerically or by se...

Full description

Bibliographic Details
Main Authors: Anderson Peter, Kruczenski Martin
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:EPJ Web of Conferences
Online Access:https://doi.org/10.1051/epjconf/201817511011
_version_ 1818681464269570048
author Anderson Peter
Kruczenski Martin
author_facet Anderson Peter
Kruczenski Martin
author_sort Anderson Peter
collection DOAJ
description In principle the loop equation provides a complete formulation of a gauge theory purely in terms ofWilson loops. In the case of lattice gauge theories the loop equation is a well defined equation for a discrete set of quantities and can be easily solved at strong coupling either numerically or by series expansion. At weak coupling, however, we argue that the equations are not well defined unless a certain set of positivity constraints is imposed. Using semi-definite programming we show numerically that, for a pure Yang Mills theory in two, three and four dimensions, these constraints lead to good results for the mean value of the energy at weak coupling. Further, the positivity constraints imply the existence of a positive definite matrix whose entries are expectation values of Wilson loops. This matrix allows us to define a certain entropy associated with theWilson loops. We compute this entropy numerically and describe some of its properties. Finally we discuss some preliminary ideas for extending the results to supersymmetric N = 4 SYM.
first_indexed 2024-12-17T10:03:22Z
format Article
id doaj.art-21990d5223b04cb3961450960c72ef99
institution Directory Open Access Journal
issn 2100-014X
language English
last_indexed 2024-12-17T10:03:22Z
publishDate 2018-01-01
publisher EDP Sciences
record_format Article
series EPJ Web of Conferences
spelling doaj.art-21990d5223b04cb3961450960c72ef992022-12-21T21:53:13ZengEDP SciencesEPJ Web of Conferences2100-014X2018-01-011751101110.1051/epjconf/201817511011epjconf_lattice2018_11011Loop equation in Lattice gauge theories and bootstrap methodsAnderson PeterKruczenski MartinIn principle the loop equation provides a complete formulation of a gauge theory purely in terms ofWilson loops. In the case of lattice gauge theories the loop equation is a well defined equation for a discrete set of quantities and can be easily solved at strong coupling either numerically or by series expansion. At weak coupling, however, we argue that the equations are not well defined unless a certain set of positivity constraints is imposed. Using semi-definite programming we show numerically that, for a pure Yang Mills theory in two, three and four dimensions, these constraints lead to good results for the mean value of the energy at weak coupling. Further, the positivity constraints imply the existence of a positive definite matrix whose entries are expectation values of Wilson loops. This matrix allows us to define a certain entropy associated with theWilson loops. We compute this entropy numerically and describe some of its properties. Finally we discuss some preliminary ideas for extending the results to supersymmetric N = 4 SYM.https://doi.org/10.1051/epjconf/201817511011
spellingShingle Anderson Peter
Kruczenski Martin
Loop equation in Lattice gauge theories and bootstrap methods
EPJ Web of Conferences
title Loop equation in Lattice gauge theories and bootstrap methods
title_full Loop equation in Lattice gauge theories and bootstrap methods
title_fullStr Loop equation in Lattice gauge theories and bootstrap methods
title_full_unstemmed Loop equation in Lattice gauge theories and bootstrap methods
title_short Loop equation in Lattice gauge theories and bootstrap methods
title_sort loop equation in lattice gauge theories and bootstrap methods
url https://doi.org/10.1051/epjconf/201817511011
work_keys_str_mv AT andersonpeter loopequationinlatticegaugetheoriesandbootstrapmethods
AT kruczenskimartin loopequationinlatticegaugetheoriesandbootstrapmethods