Polymerization and Collision in High Concentrations for Brownian Coagulation

Aggregation always occurs in industrial processes with fractal-like particles, especially in dense systems (the volume fraction,<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mi&...

Full description

Bibliographic Details
Main Authors: Xiaoyue Wang, Yueyan Liu, Taiquan Wu, Mingzhou Yu
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/15/6815
_version_ 1797525829353209856
author Xiaoyue Wang
Yueyan Liu
Taiquan Wu
Mingzhou Yu
author_facet Xiaoyue Wang
Yueyan Liu
Taiquan Wu
Mingzhou Yu
author_sort Xiaoyue Wang
collection DOAJ
description Aggregation always occurs in industrial processes with fractal-like particles, especially in dense systems (the volume fraction,<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mi>ϕ</mi><mo>></mo><mn>1</mn><mo>%</mo></mrow></semantics></math></inline-formula>). However, the classic aggregation theory, established by Smoluchowski in 1917, cannot sufficiently simulate the particle dynamics in dense systems, particularly those of generat ed fractal-like particles. In this article, the Langevin dynamic was applied to study the collision rate of aggregations as well as the structure of aggregates affected by different volume fractions. It is shown that the collision rate of highly concentrated particles is progressively higher than that of a dilute concentration, and the SPSD (self-preserving size distribution) is approached (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>g</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>≥</mo><mn>1.5</mn></mrow></semantics></math></inline-formula>). With the increase in volume fraction, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>, the SPSD broadens, and the geometric standard is 1.54, 1.98, and 2.73 at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>=</mo><mn>0.1</mn><mo>,</mo><mo> </mo><mn>0.2</mn><mo>,</mo><mrow><mo> </mo><mi>and</mi><mo> </mo></mrow><mn>0.3</mn></mrow></semantics></math></inline-formula>. When the volume fraction, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>, is higher, the radius of gyration is smaller with the same cluster size (number-based), which means the particle agglomerations are in a tighter coagulation. The fractal-like property <i>D<sub>f</sub></i> is in the range of 1.60–2.0 in a high-concentration system. Knowing the details of the collision progress in a high-concentration system can be useful for calculating the dynamics of coagulating fractal-like particles in the industrial process.
first_indexed 2024-03-10T09:18:33Z
format Article
id doaj.art-2199b4d70b084c26a2cea3e9f21c468f
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-10T09:18:33Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-2199b4d70b084c26a2cea3e9f21c468f2023-11-22T05:20:00ZengMDPI AGApplied Sciences2076-34172021-07-011115681510.3390/app11156815Polymerization and Collision in High Concentrations for Brownian CoagulationXiaoyue Wang0Yueyan Liu1Taiquan Wu2Mingzhou Yu3Laboratory of Aerosol Science and Technology, China Jiliang University, Hangzhou 310000, ChinaCollege of Modern Science and Technology, China Jiliang University, Yiwu 322000, ChinaCollege of Modern Science and Technology, China Jiliang University, Yiwu 322000, ChinaLaboratory of Aerosol Science and Technology, China Jiliang University, Hangzhou 310000, ChinaAggregation always occurs in industrial processes with fractal-like particles, especially in dense systems (the volume fraction,<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mi>ϕ</mi><mo>></mo><mn>1</mn><mo>%</mo></mrow></semantics></math></inline-formula>). However, the classic aggregation theory, established by Smoluchowski in 1917, cannot sufficiently simulate the particle dynamics in dense systems, particularly those of generat ed fractal-like particles. In this article, the Langevin dynamic was applied to study the collision rate of aggregations as well as the structure of aggregates affected by different volume fractions. It is shown that the collision rate of highly concentrated particles is progressively higher than that of a dilute concentration, and the SPSD (self-preserving size distribution) is approached (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>g</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>≥</mo><mn>1.5</mn></mrow></semantics></math></inline-formula>). With the increase in volume fraction, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>, the SPSD broadens, and the geometric standard is 1.54, 1.98, and 2.73 at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>=</mo><mn>0.1</mn><mo>,</mo><mo> </mo><mn>0.2</mn><mo>,</mo><mrow><mo> </mo><mi>and</mi><mo> </mo></mrow><mn>0.3</mn></mrow></semantics></math></inline-formula>. When the volume fraction, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>, is higher, the radius of gyration is smaller with the same cluster size (number-based), which means the particle agglomerations are in a tighter coagulation. The fractal-like property <i>D<sub>f</sub></i> is in the range of 1.60–2.0 in a high-concentration system. Knowing the details of the collision progress in a high-concentration system can be useful for calculating the dynamics of coagulating fractal-like particles in the industrial process.https://www.mdpi.com/2076-3417/11/15/6815collisionBrownian motionaggregationmolecular dynamics
spellingShingle Xiaoyue Wang
Yueyan Liu
Taiquan Wu
Mingzhou Yu
Polymerization and Collision in High Concentrations for Brownian Coagulation
Applied Sciences
collision
Brownian motion
aggregation
molecular dynamics
title Polymerization and Collision in High Concentrations for Brownian Coagulation
title_full Polymerization and Collision in High Concentrations for Brownian Coagulation
title_fullStr Polymerization and Collision in High Concentrations for Brownian Coagulation
title_full_unstemmed Polymerization and Collision in High Concentrations for Brownian Coagulation
title_short Polymerization and Collision in High Concentrations for Brownian Coagulation
title_sort polymerization and collision in high concentrations for brownian coagulation
topic collision
Brownian motion
aggregation
molecular dynamics
url https://www.mdpi.com/2076-3417/11/15/6815
work_keys_str_mv AT xiaoyuewang polymerizationandcollisioninhighconcentrationsforbrowniancoagulation
AT yueyanliu polymerizationandcollisioninhighconcentrationsforbrowniancoagulation
AT taiquanwu polymerizationandcollisioninhighconcentrationsforbrowniancoagulation
AT mingzhouyu polymerizationandcollisioninhighconcentrationsforbrowniancoagulation