Production of Nanocellulose Film from Abaca Fibers

Abaca fibers were subjected to a TEMPO mediated oxidation to extract nanocellulose on a 500 L capacity locally fabricated reactor. A yield of 46.7% white gel material with 2.23% solid content was obtained from an overnight reaction. Transmission electron microscopy scan of the white gel material con...

Full description

Bibliographic Details
Main Authors: Anniver Ryan Lapuz, Satoru Tsuchikawa, Tetsuya Inagaki, Te Ma, Veronica Migo
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/12/5/601
Description
Summary:Abaca fibers were subjected to a TEMPO mediated oxidation to extract nanocellulose on a 500 L capacity locally fabricated reactor. A yield of 46.7% white gel material with 2.23% solid content was obtained from an overnight reaction. Transmission electron microscopy scan of the white gel material confirms the production of relatively short highly individualized cellulose nanofibril (CNF) as the diameter of abaca fiber was reduced from 16.28 μm to 3.12 nm with fiber length in the range of 100 nm to 200 nm. Nanocellulose film was prepared using air drying (CNF-VC) and vacuum oven drying (CNF-OD). The effect of CNF concentration on the physical, morphological, thermal and mechanical properties were evaluated. FTIR spectra showed cellulose I spectra between abaca fiber with both the CNF-VC film and CNF-OD film with two distinct peaks at 1620 cm<sup>−1</sup> and 1720 cm<sup>−1</sup> attributed to the carboxyl group resulting from the TEMPO oxidation. In addition, the carboxyl group decreases in thermal stability of cellulose. Moreover, the XRD scan showed a decrease in crystallinity index of CNF films compared to abaca fibers. CNF-VC film showed the highest tensile strength at 0.4% concentration with 88.30 MPa, while a 89.72 MPa was observed for CNF-OD film at 0.8% concentration.
ISSN:2073-4352