Research on the hydrogen consumption of fuel cell electric vehicles based on the flowmeter and short-cut method
Energy consumption is essential for evaluating the competitiveness of fuel cell electric vehicles. A critical step in energy consumption measurement is measuring hydrogen consumption, including the mass method, the P/T method, and the flowmeter method. The flowmeter method has always been a research...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-11-01
|
Series: | Energy Reports |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352484722018157 |
_version_ | 1797950711909056512 |
---|---|
author | Hao Lan Xiaobing Wang Weijian Hao Dong Hao Yuntang He Nuo Xu |
author_facet | Hao Lan Xiaobing Wang Weijian Hao Dong Hao Yuntang He Nuo Xu |
author_sort | Hao Lan |
collection | DOAJ |
description | Energy consumption is essential for evaluating the competitiveness of fuel cell electric vehicles. A critical step in energy consumption measurement is measuring hydrogen consumption, including the mass method, the P/T method, and the flowmeter method. The flowmeter method has always been a research focus because of its simple operation, low cost, and solid real-time performance. Current research has shown the accuracy of the flowmeter method under specific conditions. However, many factors in the real scenario will influence the test result, such as unintended vibration, environment temperature, and onboard hydrogen capacity calibration. On the other hand, the short-cut method is also researched to replace the run-out method to improve test efficiency. To evaluate whether the flowmeter method basing on the short-cut method can genuinely reflect the hydrogen consumption of an actual vehicle, we research and test for New European Driving Cycle (NEDC) and China Light-Duty Vehicle Test Cycle (CLTC) using the same vehicle. The results show that the short-cut method can save at least 50% of the test time compared with the run-out method. The error of the short-cut method based on the flowmeter for the NEDC working condition is less than 0.1%, and for the CLTC working conditions is 8.12%. After adding a throttle valve and a 4L buffer tank, the error is reduced to 4.76% from 8.12%. The test results show that hydrogen consumption measurement based on the flowmeter and short-cut method should adopt corresponding solutions according to the scenarios. |
first_indexed | 2024-04-10T22:19:30Z |
format | Article |
id | doaj.art-21aad95ebeb6448db266e1bce34f1c57 |
institution | Directory Open Access Journal |
issn | 2352-4847 |
language | English |
last_indexed | 2024-04-10T22:19:30Z |
publishDate | 2022-11-01 |
publisher | Elsevier |
record_format | Article |
series | Energy Reports |
spelling | doaj.art-21aad95ebeb6448db266e1bce34f1c572023-01-18T04:31:29ZengElsevierEnergy Reports2352-48472022-11-0184050Research on the hydrogen consumption of fuel cell electric vehicles based on the flowmeter and short-cut methodHao Lan0Xiaobing Wang1Weijian Hao2Dong Hao3Yuntang He4Nuo Xu5China Automotive Technology & Research Center Co., Ltd (CATARC), Tianjin, 300300, China; Corresponding author.China Automotive Technology & Research Center Co., Ltd (CATARC), Tianjin, 300300, ChinaChina Automotive Technology & Research Center Co., Ltd (CATARC), Tianjin, 300300, ChinaChina Automotive Technology & Research Center Co., Ltd (CATARC), Tianjin, 300300, ChinaChina Automotive Technology & Research Center Co., Ltd (CATARC), Tianjin, 300300, ChinaToyota Motor (China) Investment Co., Ltd, Beijing, 100020, ChinaEnergy consumption is essential for evaluating the competitiveness of fuel cell electric vehicles. A critical step in energy consumption measurement is measuring hydrogen consumption, including the mass method, the P/T method, and the flowmeter method. The flowmeter method has always been a research focus because of its simple operation, low cost, and solid real-time performance. Current research has shown the accuracy of the flowmeter method under specific conditions. However, many factors in the real scenario will influence the test result, such as unintended vibration, environment temperature, and onboard hydrogen capacity calibration. On the other hand, the short-cut method is also researched to replace the run-out method to improve test efficiency. To evaluate whether the flowmeter method basing on the short-cut method can genuinely reflect the hydrogen consumption of an actual vehicle, we research and test for New European Driving Cycle (NEDC) and China Light-Duty Vehicle Test Cycle (CLTC) using the same vehicle. The results show that the short-cut method can save at least 50% of the test time compared with the run-out method. The error of the short-cut method based on the flowmeter for the NEDC working condition is less than 0.1%, and for the CLTC working conditions is 8.12%. After adding a throttle valve and a 4L buffer tank, the error is reduced to 4.76% from 8.12%. The test results show that hydrogen consumption measurement based on the flowmeter and short-cut method should adopt corresponding solutions according to the scenarios.http://www.sciencedirect.com/science/article/pii/S2352484722018157Fuel cell electric vehicleEnergy consumptionShort-cut methodFlowmeter method |
spellingShingle | Hao Lan Xiaobing Wang Weijian Hao Dong Hao Yuntang He Nuo Xu Research on the hydrogen consumption of fuel cell electric vehicles based on the flowmeter and short-cut method Energy Reports Fuel cell electric vehicle Energy consumption Short-cut method Flowmeter method |
title | Research on the hydrogen consumption of fuel cell electric vehicles based on the flowmeter and short-cut method |
title_full | Research on the hydrogen consumption of fuel cell electric vehicles based on the flowmeter and short-cut method |
title_fullStr | Research on the hydrogen consumption of fuel cell electric vehicles based on the flowmeter and short-cut method |
title_full_unstemmed | Research on the hydrogen consumption of fuel cell electric vehicles based on the flowmeter and short-cut method |
title_short | Research on the hydrogen consumption of fuel cell electric vehicles based on the flowmeter and short-cut method |
title_sort | research on the hydrogen consumption of fuel cell electric vehicles based on the flowmeter and short cut method |
topic | Fuel cell electric vehicle Energy consumption Short-cut method Flowmeter method |
url | http://www.sciencedirect.com/science/article/pii/S2352484722018157 |
work_keys_str_mv | AT haolan researchonthehydrogenconsumptionoffuelcellelectricvehiclesbasedontheflowmeterandshortcutmethod AT xiaobingwang researchonthehydrogenconsumptionoffuelcellelectricvehiclesbasedontheflowmeterandshortcutmethod AT weijianhao researchonthehydrogenconsumptionoffuelcellelectricvehiclesbasedontheflowmeterandshortcutmethod AT donghao researchonthehydrogenconsumptionoffuelcellelectricvehiclesbasedontheflowmeterandshortcutmethod AT yuntanghe researchonthehydrogenconsumptionoffuelcellelectricvehiclesbasedontheflowmeterandshortcutmethod AT nuoxu researchonthehydrogenconsumptionoffuelcellelectricvehiclesbasedontheflowmeterandshortcutmethod |