Mechanisms of the effectiveness of poly(ε-caprolactone) lipid-core nanocapsules loaded with methotrexate on glioblastoma multiforme treatment

Natália Rubio Claret Pereira,1,* Rodrigo Azevedo Loiola,1,* Stephen Fernandes Rodrigues,1 Catiuscia P de Oliveira,2 Sabrina L Büttenbender,3 Silvia S Guterres,2 Adriana R Pohlmann,3 Sandra H Farsky1 1Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sc...

Full description

Bibliographic Details
Main Authors: Pereira NRC, Loiola RA, Rodrigues SF, de Oliveira CP, Büttenbender SL, Guterres SS, Pohlmann AR, Farsky SH
Format: Article
Language:English
Published: Dove Medical Press 2018-08-01
Series:International Journal of Nanomedicine
Subjects:
Online Access:https://www.dovepress.com/mechanisms-of-the-effectiveness-of-polyepsilon-caprolactone-lipid-core-peer-reviewed-article-IJN
Description
Summary:Natália Rubio Claret Pereira,1,* Rodrigo Azevedo Loiola,1,* Stephen Fernandes Rodrigues,1 Catiuscia P de Oliveira,2 Sabrina L Büttenbender,3 Silvia S Guterres,2 Adriana R Pohlmann,3 Sandra H Farsky1 1Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil; 2Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; 3Department of Organic Chemistry, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil *These authors contributed equally to this work Purpose: The low penetration of drugs across the blood–brain barrier (BBB) compromises the delivery of chemotherapeutic agents to the brain parenchyma and contributes to the poor prognosis of glioblastoma multiforme (GBM). We investigated the efficacy of methotrexate-loaded lipid-core nanocapsules (MTX-LNC) administered by the oral route to treat murine GBM, its ability to cross the BBB, and the mechanisms of MTX-LNC uptake by cultured GL261 glioma and BV2 microglia cells. Materials and methods: Female C57B/6 mice were used in intravital microscopy assays to investigate the penetrance of rhodamine B-label MTX-LNC (RhoB/MTX-LNC) in the brain after oral or IV administration, and to evaluate the BBB integrity. Intracranial implantation of GL261 cells was undertaken to induce a murine GBM model, and the effectiveness of oral MTX or MTX-LNC treatments (started on Day 10 of GBM, every 2 days for 12 days) was quantified by tumor size, body weight, and leukogram. Pharmacological blockade of endocytic pathways was done to investigate the mechanisms of MTX-LNC uptake by cultured GL261 and microglia BV2 cells by using fluorescence microscopy. The effect of MTX-LNC or MTX on GL261 and BV2 proliferation was evaluated to compare the cytotoxicity of such compounds. Results: RhoB/MTX-LNC was detected in brain parenchyma of mice after IV or oral administration, without any damage on BBB. Oral treatment with MTX-LNC reduced tumor volume and prevented weight loss and leukopenia in comparison to MTX-treated mice. MTX-LNC uptake by GL261 is caveolae-dependent, whereas endocytosis of MTX-LNC by BV2 occurs via phagocytosis and macropinocytosis. Both MTX-LNC and MTX reduced GL261 and BV2 proliferation; however, MTX-LNC showed higher efficacy in the inhibition of glioma proliferation. Conclusion: Together, we infer that the higher ability of MTX-LNC to cross the BBB and be captured by cancer and immune brain cells by different mechanisms is responsible for the higher efficacy of oral MTX-LNC treatment in GBM. Keywords: glioma, nanomedicine, blood–brain barrier, microglia, endocytosis
ISSN:1178-2013