HIV Tat Domain Improves Cross-correction of Human Galactocerebrosidase in a Gene- and Flanking Sequence-dependent Manner

Krabbe disease is a devastating neurodegenerative lysosomal storage disorder caused by a deficiency of β-galactocerebrosidase (GALC). Gene therapy is a promising therapeutic approach for Krabbe disease. As the human brain is large and it is difficult to achieve global gene transduction, the efficacy...

Full description

Bibliographic Details
Main Authors: Xing-Li Meng, Yoshikatsu Eto, Raphael Schiffmann, Jin-Song Shen
Format: Article
Language:English
Published: Elsevier 2013-01-01
Series:Molecular Therapy: Nucleic Acids
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2162253116301883
Description
Summary:Krabbe disease is a devastating neurodegenerative lysosomal storage disorder caused by a deficiency of β-galactocerebrosidase (GALC). Gene therapy is a promising therapeutic approach for Krabbe disease. As the human brain is large and it is difficult to achieve global gene transduction, the efficacy of cross-correction is a critical determinant of the outcome of gene therapy for this disease. We investigated whether HIV Tat protein transduction domain (PTD) can improve the cross-correction of GALC. Tat-PTD significantly increased (~6-fold) cross-correction of GALC through enhanced secretion and uptake in a cell-culture model system. The effects of Tat-PTD were gene and flanking amino acids dependent. Tat-fusion increased the secretion of α-galactosidase A (α-gal A), but this did not improve its cross-correction. Tat-fusion did not change either secretion or uptake of β-glucocerebrosidase (GC). Tat-PTD increased GALC protein synthesis, abolished reactivity of GC to the 8E4 antibody, and likely reduced mannose phosphorylation in all these lysosomal enzymes. This study demonstrated that Tat-PTD can be useful for increasing cross-correction efficiency of lysosomal enzymes. However, Tat-PTD is not a mere adhesive motif but possesses a variety of biological functions. Therefore, the potential beneficial effect of Tat-PTD should be assessed individually on each lysosomal enzyme.
ISSN:2162-2531