Deep learning representations to support COVID-19 diagnosis on CT slices

Introduction: The coronavirus disease 2019 (COVID-19) has become a significant public health problem worldwide. In this context, CT-scan automatic analysis has emerged as a COVID-19 complementary diagnosis tool allowing for radiological finding characterization, patient categorization, and disease f...

Full description

Bibliographic Details
Main Authors: Josué Ruano, John Arcila, David Romo-Bucheli, Carlos Vargas, Jefferson Rodríguez, Óscar Mendoza, Miguel Plazas, Lola Bautista, Jorge Villamizar, Gabriel Pedraza, Alejandra Moreno, Diana Valenzuela, Lina Vázquez, Carolina Valenzuela-Santos, Paul Camacho, Daniel Mantilla, Fabio Martínez Carrillo
Format: Article
Language:English
Published: Instituto Nacional de Salud 2022-03-01
Series:Biomédica: revista del Instituto Nacional de Salud
Subjects:
Online Access:https://revistabiomedica.org/index.php/biomedica/article/view/5927
_version_ 1828522503792754688
author Josué Ruano
John Arcila
David Romo-Bucheli
Carlos Vargas
Jefferson Rodríguez
Óscar Mendoza
Miguel Plazas
Lola Bautista
Jorge Villamizar
Gabriel Pedraza
Alejandra Moreno
Diana Valenzuela
Lina Vázquez
Carolina Valenzuela-Santos
Paul Camacho
Daniel Mantilla
Fabio Martínez Carrillo
author_facet Josué Ruano
John Arcila
David Romo-Bucheli
Carlos Vargas
Jefferson Rodríguez
Óscar Mendoza
Miguel Plazas
Lola Bautista
Jorge Villamizar
Gabriel Pedraza
Alejandra Moreno
Diana Valenzuela
Lina Vázquez
Carolina Valenzuela-Santos
Paul Camacho
Daniel Mantilla
Fabio Martínez Carrillo
author_sort Josué Ruano
collection DOAJ
description Introduction: The coronavirus disease 2019 (COVID-19) has become a significant public health problem worldwide. In this context, CT-scan automatic analysis has emerged as a COVID-19 complementary diagnosis tool allowing for radiological finding characterization, patient categorization, and disease follow-up. However, this analysis depends on the radiologist’s expertise, which may result in subjective evaluations. Objective: To explore deep learning representations, trained from thoracic CT-slices, to automatically distinguish COVID-19 disease from control samples. Materials and methods: Two datasets were used: SARS-CoV-2 CT Scan (Set-1) and FOSCAL clinic’s dataset (Set-2). The deep representations took advantage of supervised learning models previously trained on the natural image domain, which were adjusted following a transfer learning scheme. The deep classification was carried out: (a) via an end-to-end deep learning approach and (b) via random forest and support vector machine classifiers by feeding the deep representation embedding vectors into these classifiers. Results: The end-to-end classification achieved an average accuracy of 92.33% (89.70% precision) for Set-1 and 96.99% (96.62% precision) for Set-2. The deep feature embedding with a support vector machine achieved an average accuracy of 91.40% (95.77% precision) and 96.00% (94.74% precision) for Set-1 and Set-2, respectively. Conclusion: Deep representations have achieved outstanding performance in the identification of COVID-19 cases on CT scans demonstrating good characterization of the COVID-19 radiological patterns. These representations could potentially support the COVID-19 diagnosis in clinical settings.
first_indexed 2024-12-11T20:09:01Z
format Article
id doaj.art-21b384a2a1f141549dc6e006e65e12a2
institution Directory Open Access Journal
issn 0120-4157
language English
last_indexed 2024-12-11T20:09:01Z
publishDate 2022-03-01
publisher Instituto Nacional de Salud
record_format Article
series Biomédica: revista del Instituto Nacional de Salud
spelling doaj.art-21b384a2a1f141549dc6e006e65e12a22022-12-22T00:52:19ZengInstituto Nacional de SaludBiomédica: revista del Instituto Nacional de Salud0120-41572022-03-0142117018310.7705/biomedica.59275927Deep learning representations to support COVID-19 diagnosis on CT slicesJosué Ruano0John Arcila1David Romo-Bucheli2Carlos Vargas3Jefferson Rodríguez4Óscar Mendoza5Miguel Plazas6Lola Bautista7Jorge Villamizar8Gabriel Pedraza9Alejandra Moreno10Diana Valenzuela11Lina Vázquez12Carolina Valenzuela-Santos13Paul Camacho14Daniel Mantilla15Fabio Martínez Carrillo16BIVL2ab Biomedical Imaging, Vision and Learning Laboratory, Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, Bucaramanga, ColombiaBIVL2ab Biomedical Imaging, Vision and Learning Laboratory, Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, Bucaramanga, ColombiaBIVL2ab Biomedical Imaging, Vision and Learning Laboratory, Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, Bucaramanga, ColombiaBIVL2ab Biomedical Imaging, Vision and Learning Laboratory, Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, Bucaramanga, ColombiaBIVL2ab Biomedical Imaging, Vision and Learning Laboratory, Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, Bucaramanga, ColombiaBIVL2ab Biomedical Imaging, Vision and Learning Laboratory, Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, Bucaramanga, ColombiaBIVL2ab Biomedical Imaging, Vision and Learning Laboratory, Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, Bucaramanga, ColombiaBIVL2ab Biomedical Imaging, Vision and Learning Laboratory, Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, Bucaramanga, ColombiaBIVL2ab Biomedical Imaging, Vision and Learning Laboratory, Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, Bucaramanga, Colombia; Facultad de Ingeniería, Universidad de Los Andes, Mérida, VenezuelaBIVL2ab Biomedical Imaging, Vision and Learning Laboratory, Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, Bucaramanga, ColombiaBIVL2ab Biomedical Imaging, Vision and Learning Laboratory, Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, Bucaramanga, ColombiaClínica FOSCAL, Fundación Oftalmológica de Santander, Bucaramanga, ColombiaClínica FOSCAL, Fundación Oftalmológica de Santander, Bucaramanga, ColombiaClínica FOSCAL, Fundación Oftalmológica de Santander, Bucaramanga, ColombiaClínica FOSCAL, Fundación Oftalmológica de Santander, Bucaramanga, ColombiaClínica FOSCAL, Fundación Oftalmológica de Santander, Bucaramanga, ColombiaBIVL2ab Biomedical Imaging, Vision and Learning Laboratory, Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, Bucaramanga, ColombiaIntroduction: The coronavirus disease 2019 (COVID-19) has become a significant public health problem worldwide. In this context, CT-scan automatic analysis has emerged as a COVID-19 complementary diagnosis tool allowing for radiological finding characterization, patient categorization, and disease follow-up. However, this analysis depends on the radiologist’s expertise, which may result in subjective evaluations. Objective: To explore deep learning representations, trained from thoracic CT-slices, to automatically distinguish COVID-19 disease from control samples. Materials and methods: Two datasets were used: SARS-CoV-2 CT Scan (Set-1) and FOSCAL clinic’s dataset (Set-2). The deep representations took advantage of supervised learning models previously trained on the natural image domain, which were adjusted following a transfer learning scheme. The deep classification was carried out: (a) via an end-to-end deep learning approach and (b) via random forest and support vector machine classifiers by feeding the deep representation embedding vectors into these classifiers. Results: The end-to-end classification achieved an average accuracy of 92.33% (89.70% precision) for Set-1 and 96.99% (96.62% precision) for Set-2. The deep feature embedding with a support vector machine achieved an average accuracy of 91.40% (95.77% precision) and 96.00% (94.74% precision) for Set-1 and Set-2, respectively. Conclusion: Deep representations have achieved outstanding performance in the identification of COVID-19 cases on CT scans demonstrating good characterization of the COVID-19 radiological patterns. These representations could potentially support the COVID-19 diagnosis in clinical settings.https://revistabiomedica.org/index.php/biomedica/article/view/5927coronavirus infections/diagnosistomography, x-ray computeddeep learning
spellingShingle Josué Ruano
John Arcila
David Romo-Bucheli
Carlos Vargas
Jefferson Rodríguez
Óscar Mendoza
Miguel Plazas
Lola Bautista
Jorge Villamizar
Gabriel Pedraza
Alejandra Moreno
Diana Valenzuela
Lina Vázquez
Carolina Valenzuela-Santos
Paul Camacho
Daniel Mantilla
Fabio Martínez Carrillo
Deep learning representations to support COVID-19 diagnosis on CT slices
Biomédica: revista del Instituto Nacional de Salud
coronavirus infections/diagnosis
tomography, x-ray computed
deep learning
title Deep learning representations to support COVID-19 diagnosis on CT slices
title_full Deep learning representations to support COVID-19 diagnosis on CT slices
title_fullStr Deep learning representations to support COVID-19 diagnosis on CT slices
title_full_unstemmed Deep learning representations to support COVID-19 diagnosis on CT slices
title_short Deep learning representations to support COVID-19 diagnosis on CT slices
title_sort deep learning representations to support covid 19 diagnosis on ct slices
topic coronavirus infections/diagnosis
tomography, x-ray computed
deep learning
url https://revistabiomedica.org/index.php/biomedica/article/view/5927
work_keys_str_mv AT josueruano deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT johnarcila deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT davidromobucheli deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT carlosvargas deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT jeffersonrodriguez deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT oscarmendoza deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT miguelplazas deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT lolabautista deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT jorgevillamizar deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT gabrielpedraza deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT alejandramoreno deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT dianavalenzuela deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT linavazquez deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT carolinavalenzuelasantos deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT paulcamacho deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT danielmantilla deeplearningrepresentationstosupportcovid19diagnosisonctslices
AT fabiomartinezcarrillo deeplearningrepresentationstosupportcovid19diagnosisonctslices