Assessing the Influence of Tourism-Driven Activities on Environmental Variables on Hainan Island, China

Tourism is a primary socio-economic factor on many coastal islands. Tourism contributes to the livelihoods of the residents, but also influences natural resources and energy consumption and can become a significant driver of land conversion and environmental change. Understanding the influence of to...

Full description

Bibliographic Details
Main Authors: Lixia Chu, Francis Oloo, Bin Chen, Miaomiao Xie, Thomas Blaschke
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/17/2813
Description
Summary:Tourism is a primary socio-economic factor on many coastal islands. Tourism contributes to the livelihoods of the residents, but also influences natural resources and energy consumption and can become a significant driver of land conversion and environmental change. Understanding the influence of tourist-related activities is vital for sustainable tourism development. We chose Hainan Island in South China as a research area to study the influence of tourist-driven activities on environmental variables (as Land Surface Temperatures (LST) and related ecosystem variables) during the period of 2000 to 2019. In Hainan, the local economy relies heavily on tourism, with an ever-growing influx of tourists each year. We categorised location-based points of interest (POIs) into two classes, non-tourism sites and tourism-related sites, and utilised satellite data from the cloud-based platform Google Earth Engine (GEE) to extract LST and Normalized Difference Vegetation Index (NDVI) data. We analysed the LST variations, NDVI changes and the land use/land cover (LULC) changes and compared the relative difference in LST and NDVI between the tourism-related sites and non-tourism-related sites. The main findings of this study were: (1) The median LST in the tourism-related sites was relatively higher (1.3) than the LST in the non-tourism-related sites for the 20 years. Moreover, every annual mean LST of tourism-related sites was higher than the LST values in non-tourism-related sites, with an average difference of 1.2 °C for the 20 years and a maximum difference of 1.7 °C. We found higher annual LST anomalies for tourist-related sites compared to non-tourism sites after 2010, which indicated the likely positive differences in LST above the average LST during 20 years for tourism-related sites when compared against the non-tourism related sites, thus highlighting the potential influence of tourism activities on LST. (2) The annual mean NDVI value for tourism-related sites was significantly lower than for non-tourism places every year, with an average NDVI difference of 0.26 between the two sites. (3) The land cover changed significantly: croplands and forests reduced by 3.5% and 2.8% respectively, while the areas covered by orchards and urban areas increased by 2% and 72.3% respectively. These results indicate the influence of the tourism-driven activities includes the relatively high LST, vegetation degradation and land-use conversion particular to urban cover type. The outcome of this work provides a method that combines cloud-based satellite-derived data with location-based POIs data for quantifying the long-term influence of tourism-related activities on sensitive coastal ecosystems. It contributes to designing evidence-driven management plans and policies for the sustainable tourism development in coastal areas.
ISSN:2072-4292