Time-Varying Wind-Resistance Global Reliability Analysis of In-Service Transmission Tower Using High-Order Moments-Based Improved Maximum Entropy Method

The transmission tower is an important infrastructure for transmission lines. To secure the operation of the power grid, it is particularly important to evaluate the safety of the in-service transmission tower under the action of random wind loads throughout their entire life cycle. Thus, this paper...

Full description

Bibliographic Details
Main Authors: Cheng Liu, Tao Wang, Zhengqi Tang, Zhengliang Li
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/7/4245
Description
Summary:The transmission tower is an important infrastructure for transmission lines. To secure the operation of the power grid, it is particularly important to evaluate the safety of the in-service transmission tower under the action of random wind loads throughout their entire life cycle. Thus, this paper firstly establishes the time-varying equivalent performance function of the in-service transmission tower under the action of random wind loads. Then, in order to address the shortcomings of the traditional maximum entropy method, the high-order moments-based improved maximum entropy method (HM-IMEM) is proposed and extended to assess the wind resistance global reliability of the in-service transmission tower. Finally, the effectiveness of the proposed method is demonstrated evaluating the wind resistance global reliability of an in-service transmission tower in an engineering setting. Analytic results indicate that: (1) The proposed method can ensure a balance between calculation accuracy and efficiency. Compared with Monte Carlo simulation (MCS) method, the relative error is only 0.11% and the computational cost is much lower than that of the MCS method. (2) The reliability of the in-service transmission tower significantly decreased over time. In order to guide maintenance and reinforcement by predicting the time-varying performance of in-service transmission towers, it is of great engineering value to evaluate the wind resistance global reliability of the in-service transmission tower.
ISSN:2076-3417