On a functional equation related to an automorphism of a unit circle

In this article the complete description of the decisions of a functional equation (1 + ¯ζeiθ z)pf (z) = f (ω(0))f (z) is given, where ω(z) = (eiθ z + ζ )/(1 + ¯ζeiθ z) – automorphism of a unit circle E and the decisions are searched among analytical in E functions. It is established, that research...

Full description

Bibliographic Details
Main Author: Eduardas Kirjackis
Format: Article
Language:English
Published: Vilnius University Press 2023-09-01
Series:Lietuvos Matematikos Rinkinys
Subjects:
Online Access:https://www.zurnalai.vu.lt/LMR/article/view/30568
_version_ 1797198415128428544
author Eduardas Kirjackis
author_facet Eduardas Kirjackis
author_sort Eduardas Kirjackis
collection DOAJ
description In this article the complete description of the decisions of a functional equation (1 + ¯ζeiθ z)pf (z) = f (ω(0))f (z) is given, where ω(z) = (eiθ z + ζ )/(1 + ¯ζeiθ z) – automorphism of a unit circle E and the decisions are searched among analytical in E functions. It is established, that research of a given functional equation is closely connected to property of stationary points of automorpism ω(z).
first_indexed 2024-03-07T14:22:03Z
format Article
id doaj.art-21e128c8bab543a582481b9296794623
institution Directory Open Access Journal
issn 0132-2818
2335-898X
language English
last_indexed 2024-04-24T06:59:29Z
publishDate 2023-09-01
publisher Vilnius University Press
record_format Article
series Lietuvos Matematikos Rinkinys
spelling doaj.art-21e128c8bab543a582481b92967946232024-04-22T09:01:07ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2023-09-0146spec.10.15388/LMR.2006.30568On a functional equation related to an automorphism of a unit circleEduardas Kirjackis0Vilnius Gedimino Technical University In this article the complete description of the decisions of a functional equation (1 + ¯ζeiθ z)pf (z) = f (ω(0))f (z) is given, where ω(z) = (eiθ z + ζ )/(1 + ¯ζeiθ z) – automorphism of a unit circle E and the decisions are searched among analytical in E functions. It is established, that research of a given functional equation is closely connected to property of stationary points of automorpism ω(z). https://www.zurnalai.vu.lt/LMR/article/view/30568analytical functionunit circleautomorphism of unit circle
spellingShingle Eduardas Kirjackis
On a functional equation related to an automorphism of a unit circle
Lietuvos Matematikos Rinkinys
analytical function
unit circle
automorphism of unit circle
title On a functional equation related to an automorphism of a unit circle
title_full On a functional equation related to an automorphism of a unit circle
title_fullStr On a functional equation related to an automorphism of a unit circle
title_full_unstemmed On a functional equation related to an automorphism of a unit circle
title_short On a functional equation related to an automorphism of a unit circle
title_sort on a functional equation related to an automorphism of a unit circle
topic analytical function
unit circle
automorphism of unit circle
url https://www.zurnalai.vu.lt/LMR/article/view/30568
work_keys_str_mv AT eduardaskirjackis onafunctionalequationrelatedtoanautomorphismofaunitcircle