Probing the Effect of Titanium Substitution on the Sodium Storage in Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> Honeycomb-Type Structure

Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> with Honeycomb structure suffers from poor cycle stability when applied as cathode material for sodium-ion batteries. Herein, the strategy to improve the stability is to substitute Ni and Bi with inactive Ti. Monoclinic...

Full description

Bibliographic Details
Main Authors: Eugen Zemlyanushin, Kristina Pfeifer, Angelina Sarapulova, Martin Etter, Helmut Ehrenberg, Sonia Dsoke
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/24/6498
_version_ 1797545294220492800
author Eugen Zemlyanushin
Kristina Pfeifer
Angelina Sarapulova
Martin Etter
Helmut Ehrenberg
Sonia Dsoke
author_facet Eugen Zemlyanushin
Kristina Pfeifer
Angelina Sarapulova
Martin Etter
Helmut Ehrenberg
Sonia Dsoke
author_sort Eugen Zemlyanushin
collection DOAJ
description Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> with Honeycomb structure suffers from poor cycle stability when applied as cathode material for sodium-ion batteries. Herein, the strategy to improve the stability is to substitute Ni and Bi with inactive Ti. Monoclinic Na<sub>3</sub>Ni<sub>2-x</sub>Bi<sub>1-y</sub>Ti<sub>x+y</sub>O<sub>6</sub> powders with different Ti content were successfully synthesized via sol gel method, and 0.3 mol of Ti was determined as a maximum concentration to obtain a phase-pure compound. A solid-solution in the system of O3-NaNi<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub> and O3-Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> is obtained when this critical concentration is not exceeded. The capacity of the first desodiation process at 0.1 C of Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> (~93 mAh g<sup>−1</sup>) decreases with the increasing Ti concentration to ~77 mAh g<sup>−1</sup> for Na<sub>3</sub>Ni<sub>2</sub>Bi<sub>0.9</sub>Ti<sub>0.1</sub>O<sub>6</sub> and to ~82 mAh g<sup>−1</sup> for Na<sub>3</sub>Ni<sub>0.9</sub>Bi<sub>0.8</sub>Ti<sub>0.3</sub>O<sub>6</sub>, respectively. After 100 cycles at 1 C, a better electrochemical kinetics is obtained for the Ti-containing structures, where a fast diffusion effect of Na<sup>+</sup>-ions is more pronounced. As a result of <i>in operando</i> synchrotron radiation diffraction, during the first sodiation (O1-P3-O’3-O3) the O’3 phase, which is formed in the Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> is fully or partly replaced by P’3 phase in the Ti substituted compounds. This leads to an improvement in the kinetics of the electrochemical process. The pathway through prismatic sites of Na<sup>+</sup>-ions in the P’3 phase seems to be more favourable than through octahedral sites of O’3 phase. Additionally, at high potential, a partial suppression of the reversible phase transition P3-O1-P3 is revealed.
first_indexed 2024-03-10T14:13:24Z
format Article
id doaj.art-21e493748ac54ce69716a436926a92b2
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-10T14:13:24Z
publishDate 2020-12-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-21e493748ac54ce69716a436926a92b22023-11-20T23:59:32ZengMDPI AGEnergies1996-10732020-12-011324649810.3390/en13246498Probing the Effect of Titanium Substitution on the Sodium Storage in Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> Honeycomb-Type StructureEugen Zemlyanushin0Kristina Pfeifer1Angelina Sarapulova2Martin Etter3Helmut Ehrenberg4Sonia Dsoke5Institute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, GermanyInstitute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, GermanyInstitute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, GermanyDeutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, GermanyInstitute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, GermanyInstitute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, GermanyNa<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> with Honeycomb structure suffers from poor cycle stability when applied as cathode material for sodium-ion batteries. Herein, the strategy to improve the stability is to substitute Ni and Bi with inactive Ti. Monoclinic Na<sub>3</sub>Ni<sub>2-x</sub>Bi<sub>1-y</sub>Ti<sub>x+y</sub>O<sub>6</sub> powders with different Ti content were successfully synthesized via sol gel method, and 0.3 mol of Ti was determined as a maximum concentration to obtain a phase-pure compound. A solid-solution in the system of O3-NaNi<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub> and O3-Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> is obtained when this critical concentration is not exceeded. The capacity of the first desodiation process at 0.1 C of Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> (~93 mAh g<sup>−1</sup>) decreases with the increasing Ti concentration to ~77 mAh g<sup>−1</sup> for Na<sub>3</sub>Ni<sub>2</sub>Bi<sub>0.9</sub>Ti<sub>0.1</sub>O<sub>6</sub> and to ~82 mAh g<sup>−1</sup> for Na<sub>3</sub>Ni<sub>0.9</sub>Bi<sub>0.8</sub>Ti<sub>0.3</sub>O<sub>6</sub>, respectively. After 100 cycles at 1 C, a better electrochemical kinetics is obtained for the Ti-containing structures, where a fast diffusion effect of Na<sup>+</sup>-ions is more pronounced. As a result of <i>in operando</i> synchrotron radiation diffraction, during the first sodiation (O1-P3-O’3-O3) the O’3 phase, which is formed in the Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> is fully or partly replaced by P’3 phase in the Ti substituted compounds. This leads to an improvement in the kinetics of the electrochemical process. The pathway through prismatic sites of Na<sup>+</sup>-ions in the P’3 phase seems to be more favourable than through octahedral sites of O’3 phase. Additionally, at high potential, a partial suppression of the reversible phase transition P3-O1-P3 is revealed.https://www.mdpi.com/1996-1073/13/24/6498sodium-ion batterieshoneycomb-layersolid-solutioncathode material
spellingShingle Eugen Zemlyanushin
Kristina Pfeifer
Angelina Sarapulova
Martin Etter
Helmut Ehrenberg
Sonia Dsoke
Probing the Effect of Titanium Substitution on the Sodium Storage in Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> Honeycomb-Type Structure
Energies
sodium-ion batteries
honeycomb-layer
solid-solution
cathode material
title Probing the Effect of Titanium Substitution on the Sodium Storage in Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> Honeycomb-Type Structure
title_full Probing the Effect of Titanium Substitution on the Sodium Storage in Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> Honeycomb-Type Structure
title_fullStr Probing the Effect of Titanium Substitution on the Sodium Storage in Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> Honeycomb-Type Structure
title_full_unstemmed Probing the Effect of Titanium Substitution on the Sodium Storage in Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> Honeycomb-Type Structure
title_short Probing the Effect of Titanium Substitution on the Sodium Storage in Na<sub>3</sub>Ni<sub>2</sub>BiO<sub>6</sub> Honeycomb-Type Structure
title_sort probing the effect of titanium substitution on the sodium storage in na sub 3 sub ni sub 2 sub bio sub 6 sub honeycomb type structure
topic sodium-ion batteries
honeycomb-layer
solid-solution
cathode material
url https://www.mdpi.com/1996-1073/13/24/6498
work_keys_str_mv AT eugenzemlyanushin probingtheeffectoftitaniumsubstitutiononthesodiumstorageinnasub3subnisub2subbiosub6subhoneycombtypestructure
AT kristinapfeifer probingtheeffectoftitaniumsubstitutiononthesodiumstorageinnasub3subnisub2subbiosub6subhoneycombtypestructure
AT angelinasarapulova probingtheeffectoftitaniumsubstitutiononthesodiumstorageinnasub3subnisub2subbiosub6subhoneycombtypestructure
AT martinetter probingtheeffectoftitaniumsubstitutiononthesodiumstorageinnasub3subnisub2subbiosub6subhoneycombtypestructure
AT helmutehrenberg probingtheeffectoftitaniumsubstitutiononthesodiumstorageinnasub3subnisub2subbiosub6subhoneycombtypestructure
AT soniadsoke probingtheeffectoftitaniumsubstitutiononthesodiumstorageinnasub3subnisub2subbiosub6subhoneycombtypestructure