Coal and Gangue Active Identification Method Using Microwave Irradiation-Infrared Detection

In the process of the longwall top coal caving method, automatic distinction between coal and gangue at the working face is one of the most critical factors for the success of the operation. An active coal and gangue identification method using microwave irradiation combined with infrared detection...

Full description

Bibliographic Details
Main Authors: Chuang Liu, Hani S. Mitri, Huamin Li
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/12/8/951
Description
Summary:In the process of the longwall top coal caving method, automatic distinction between coal and gangue at the working face is one of the most critical factors for the success of the operation. An active coal and gangue identification method using microwave irradiation combined with infrared detection is proposed in this paper. Coal and gangue are irradiated with microwave to actively enhance the external differences between them, and then the quantitative data of the difference are quickly collected by a noncontact infrared thermal imager, to perform identification of coal and gangue. Using theoretical analysis and laboratory experiments, the physical and chemical properties of coal and gangue are analyzed in order to reveal the thermal sensitivity of coal and gangue to microwave irradiation. The influences of the coal and gangue particle size, microwave irradiation time and microwave frequency on the thermal sensitivity to microwave irradiation are investigated. The experimental results show that the average temperature rise in coal is approximately 1.5 times that in gangue material under the same microwave irradiation conditions. This supports the feasibility of this identification method, and provides theoretical and experimental bases for achieving rapid and accurate identification of coal and gangue in top coal caving operations.
ISSN:2075-163X