Universality aspects of quantum corrections to transverse momentum broadening in QCD media

Abstract We study non-linear quantum corrections to transverse momentum broadening (TMB) of a fast parton propagating in dense QCD matter in the leading logarithmic approximation. These non-local corrections yield an anomalous super-diffusive behavior characterized by a heavy tailed distribution whi...

Full description

Bibliographic Details
Main Authors: Paul Caucal, Yacine Mehtar-Tani
Format: Article
Language:English
Published: SpringerOpen 2022-09-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP09(2022)023
Description
Summary:Abstract We study non-linear quantum corrections to transverse momentum broadening (TMB) of a fast parton propagating in dense QCD matter in the leading logarithmic approximation. These non-local corrections yield an anomalous super-diffusive behavior characterized by a heavy tailed distribution which is associated with Lévy random walks. Using a formal analogy with the physics of traveling waves, we show that at late times the transverse momentum distribution tends to a universal scaling regime. We derive analytic solutions in terms of an asymptotic expansion around the scaling limit for both fixed and running coupling. We note that our analytic approach yields a good agreement with the exact numerical solutions down to realistic values of medium length. Finally, we discuss the interplay between system size and energy dependence of the diffusion coefficient q ̂ $$ \hat{q} $$ and its connection with the gluon distribution function that is manifest at large transverse momentum transfer.
ISSN:1029-8479