On the <i>A<sub>α</sub></i>-Eigenvalues of Signed Graphs

For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo>...

Full description

Bibliographic Details
Main Authors: Germain Pastén, Oscar Rojo, Luis Medina
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/16/1990
_version_ 1797522968514920448
author Germain Pastén
Oscar Rojo
Luis Medina
author_facet Germain Pastén
Oscar Rojo
Luis Medina
author_sort Germain Pastén
collection DOAJ
description For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>, let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>G</mi><mi>σ</mi></msub><mo stretchy="false">)</mo></mrow><mo>=</mo><mi>α</mi><mi>D</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo stretchy="false">)</mo></mrow><mi>A</mi><mrow><mo stretchy="false">(</mo><msub><mi>G</mi><mi>σ</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, where <i>G</i> is a simple undirected graph, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> is the diagonal matrix of its vertex degrees and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><msub><mi>G</mi><mi>σ</mi></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> is the adjacency matrix of the signed graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>G</mi><mi>σ</mi></msub></semantics></math></inline-formula> whose underlying graph is <i>G</i>. In this paper, basic properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>G</mi><mi>σ</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> are obtained, its positive semidefiniteness is studied and some bounds on its eigenvalues are derived—in particular, lower and upper bounds on its largest eigenvalue are obtained.
first_indexed 2024-03-10T08:36:49Z
format Article
id doaj.art-22053dfdc9c94361a8108e05bec5eeae
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T08:36:49Z
publishDate 2021-08-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-22053dfdc9c94361a8108e05bec5eeae2023-11-22T08:34:55ZengMDPI AGMathematics2227-73902021-08-01916199010.3390/math9161990On the <i>A<sub>α</sub></i>-Eigenvalues of Signed GraphsGermain Pastén0Oscar Rojo1Luis Medina2Departamento de Matemáticas, Universidad Católica del Norte, Antofagasta 1240000, ChileDepartamento de Matemáticas, Universidad Católica del Norte, Antofagasta 1240000, ChileDepartamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, ChileFor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>, let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>G</mi><mi>σ</mi></msub><mo stretchy="false">)</mo></mrow><mo>=</mo><mi>α</mi><mi>D</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo stretchy="false">)</mo></mrow><mi>A</mi><mrow><mo stretchy="false">(</mo><msub><mi>G</mi><mi>σ</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, where <i>G</i> is a simple undirected graph, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> is the diagonal matrix of its vertex degrees and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><msub><mi>G</mi><mi>σ</mi></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> is the adjacency matrix of the signed graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>G</mi><mi>σ</mi></msub></semantics></math></inline-formula> whose underlying graph is <i>G</i>. In this paper, basic properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>G</mi><mi>σ</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> are obtained, its positive semidefiniteness is studied and some bounds on its eigenvalues are derived—in particular, lower and upper bounds on its largest eigenvalue are obtained.https://www.mdpi.com/2227-7390/9/16/1990signed graphadjacency matrixbalanced signed graphswitching equivalent graphseigenvalue bounds
spellingShingle Germain Pastén
Oscar Rojo
Luis Medina
On the <i>A<sub>α</sub></i>-Eigenvalues of Signed Graphs
Mathematics
signed graph
adjacency matrix
balanced signed graph
switching equivalent graphs
eigenvalue bounds
title On the <i>A<sub>α</sub></i>-Eigenvalues of Signed Graphs
title_full On the <i>A<sub>α</sub></i>-Eigenvalues of Signed Graphs
title_fullStr On the <i>A<sub>α</sub></i>-Eigenvalues of Signed Graphs
title_full_unstemmed On the <i>A<sub>α</sub></i>-Eigenvalues of Signed Graphs
title_short On the <i>A<sub>α</sub></i>-Eigenvalues of Signed Graphs
title_sort on the i a sub α sub i eigenvalues of signed graphs
topic signed graph
adjacency matrix
balanced signed graph
switching equivalent graphs
eigenvalue bounds
url https://www.mdpi.com/2227-7390/9/16/1990
work_keys_str_mv AT germainpasten ontheiasubasubieigenvaluesofsignedgraphs
AT oscarrojo ontheiasubasubieigenvaluesofsignedgraphs
AT luismedina ontheiasubasubieigenvaluesofsignedgraphs