Tree Size Structure of <i>Tectona grandis</i> (Linn f.) Stand in Hilltop and Valley-Bottom of Omo Forest Reserve
Variability of a microsite contributes to the size hierarchy in tree populations. Tree size symmetry varies with the available growth resources. However, competition hierarchy may not cause size symmetry in tree populations. The identification of mechanisms that determine size hierarchy has ecologic...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Environmental Sciences Proceedings |
Subjects: | |
Online Access: | https://www.mdpi.com/2673-4931/13/1/21 |
_version_ | 1797611863644569600 |
---|---|
author | Oladele Fisayo Falade Stephen Busola Oguntona |
author_facet | Oladele Fisayo Falade Stephen Busola Oguntona |
author_sort | Oladele Fisayo Falade |
collection | DOAJ |
description | Variability of a microsite contributes to the size hierarchy in tree populations. Tree size symmetry varies with the available growth resources. However, competition hierarchy may not cause size symmetry in tree populations. The identification of mechanisms that determine size hierarchy has ecological significance in the management of a forest stand. Therefore, this study investigated the tree size structure of the Teak stand in the Hilltop and Valley-Bottom stands of the Omo Forest Reserve. A ten-year-old Teak plantation was delineated into Hilltop and Valley-Bottom stands based on topography. Five (30 m × 30 m) sample plots were systematically demarcated on 1 km transects in each stand. Tree stems with diameter at breast height (dbh) ≥ 10 cm were enumerated. Diameter at breast height and total height were measured using Girth tape and Spiegel Relaskop. Stem size inequality, diversity and stand attributes of both stands were evaluated for diameter and height. Data collected were analyzed using descriptive, correlation, regression analysis and <i>t</i>-test at α<sub>0.05</sub>. Mean dbh and height in the Valley-Bottom stand (11.30 ± 4.82 cm dbh and 7.26 ± 3.21 m) were not significantly different from the Hilltop stand (10.19 ± 4.62 cm dbh and 7.12 ± 3.88 m). Stem density in the Hilltop stand (1431.0 stems/ha) was higher than in Valley-Bottom stand (1248.0 stems/ha). All distributions expressed unimodality, except the diameter distribution of the Valley-Bottom stand, which expressed bimodality. The inequality was strongly correlated with the diversity indices in dbh and height distributions in the Hilltop and Valley-Bottom stands, respectively. The same mechanism was responsible for the dbh and height structures of the Hilltop and Valley-Bottom stands, respectively. However, different mechanisms were responsible for the dbh and height structures of the Valley-Bottom and Hilltop stands, respectively. |
first_indexed | 2024-03-11T06:34:40Z |
format | Article |
id | doaj.art-222633c243c946ac9d04268071ba6d35 |
institution | Directory Open Access Journal |
issn | 2673-4931 |
language | English |
last_indexed | 2024-03-11T06:34:40Z |
publishDate | 2021-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Environmental Sciences Proceedings |
spelling | doaj.art-222633c243c946ac9d04268071ba6d352023-11-17T10:59:08ZengMDPI AGEnvironmental Sciences Proceedings2673-49312021-08-011312110.3390/IECF2021-10823Tree Size Structure of <i>Tectona grandis</i> (Linn f.) Stand in Hilltop and Valley-Bottom of Omo Forest ReserveOladele Fisayo Falade0Stephen Busola Oguntona1Department of Forest Production and Products, University of Ibadan, Ibadan 200284, NigeriaDepartment of Forest Production and Products, University of Ibadan, Ibadan 200284, NigeriaVariability of a microsite contributes to the size hierarchy in tree populations. Tree size symmetry varies with the available growth resources. However, competition hierarchy may not cause size symmetry in tree populations. The identification of mechanisms that determine size hierarchy has ecological significance in the management of a forest stand. Therefore, this study investigated the tree size structure of the Teak stand in the Hilltop and Valley-Bottom stands of the Omo Forest Reserve. A ten-year-old Teak plantation was delineated into Hilltop and Valley-Bottom stands based on topography. Five (30 m × 30 m) sample plots were systematically demarcated on 1 km transects in each stand. Tree stems with diameter at breast height (dbh) ≥ 10 cm were enumerated. Diameter at breast height and total height were measured using Girth tape and Spiegel Relaskop. Stem size inequality, diversity and stand attributes of both stands were evaluated for diameter and height. Data collected were analyzed using descriptive, correlation, regression analysis and <i>t</i>-test at α<sub>0.05</sub>. Mean dbh and height in the Valley-Bottom stand (11.30 ± 4.82 cm dbh and 7.26 ± 3.21 m) were not significantly different from the Hilltop stand (10.19 ± 4.62 cm dbh and 7.12 ± 3.88 m). Stem density in the Hilltop stand (1431.0 stems/ha) was higher than in Valley-Bottom stand (1248.0 stems/ha). All distributions expressed unimodality, except the diameter distribution of the Valley-Bottom stand, which expressed bimodality. The inequality was strongly correlated with the diversity indices in dbh and height distributions in the Hilltop and Valley-Bottom stands, respectively. The same mechanism was responsible for the dbh and height structures of the Hilltop and Valley-Bottom stands, respectively. However, different mechanisms were responsible for the dbh and height structures of the Valley-Bottom and Hilltop stands, respectively.https://www.mdpi.com/2673-4931/13/1/21size diversity indicesstem size hierarchyelevation gradientinequality measuresstem diameterH-D allometry |
spellingShingle | Oladele Fisayo Falade Stephen Busola Oguntona Tree Size Structure of <i>Tectona grandis</i> (Linn f.) Stand in Hilltop and Valley-Bottom of Omo Forest Reserve Environmental Sciences Proceedings size diversity indices stem size hierarchy elevation gradient inequality measures stem diameter H-D allometry |
title | Tree Size Structure of <i>Tectona grandis</i> (Linn f.) Stand in Hilltop and Valley-Bottom of Omo Forest Reserve |
title_full | Tree Size Structure of <i>Tectona grandis</i> (Linn f.) Stand in Hilltop and Valley-Bottom of Omo Forest Reserve |
title_fullStr | Tree Size Structure of <i>Tectona grandis</i> (Linn f.) Stand in Hilltop and Valley-Bottom of Omo Forest Reserve |
title_full_unstemmed | Tree Size Structure of <i>Tectona grandis</i> (Linn f.) Stand in Hilltop and Valley-Bottom of Omo Forest Reserve |
title_short | Tree Size Structure of <i>Tectona grandis</i> (Linn f.) Stand in Hilltop and Valley-Bottom of Omo Forest Reserve |
title_sort | tree size structure of i tectona grandis i linn f stand in hilltop and valley bottom of omo forest reserve |
topic | size diversity indices stem size hierarchy elevation gradient inequality measures stem diameter H-D allometry |
url | https://www.mdpi.com/2673-4931/13/1/21 |
work_keys_str_mv | AT oladelefisayofalade treesizestructureofitectonagrandisilinnfstandinhilltopandvalleybottomofomoforestreserve AT stephenbusolaoguntona treesizestructureofitectonagrandisilinnfstandinhilltopandvalleybottomofomoforestreserve |