The Multisensor Array Based on Grown-On-Chip Zinc Oxide Nanorod Network for Selective Discrimination of Alcohol Vapors at Sub-ppm Range

We discuss the fabrication of gas-analytical multisensor arrays based on ZnO nanorods grown via a hydrothermal route directly on a multielectrode chip. The protocol to deposit the nanorods over the chip includes the primary formation of ZnO nano-clusters over the surface and secondly the oxide hydro...

Full description

Bibliographic Details
Main Authors: Anton Bobkov, Alexey Varezhnikov, Ilya Plugin, Fedor S. Fedorov, Vanessa Trouillet, Udo Geckle, Martin Sommer, Vladimir Goffman, Vyacheslav Moshnikov, Victor Sysoev
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/19/19/4265
Description
Summary:We discuss the fabrication of gas-analytical multisensor arrays based on ZnO nanorods grown via a hydrothermal route directly on a multielectrode chip. The protocol to deposit the nanorods over the chip includes the primary formation of ZnO nano-clusters over the surface and secondly the oxide hydrothermal growth in a solution that facilitates the appearance of ZnO nanorods in the high aspect ratio which comprise a network. We have tested the proof-of-concept prototype of the ZnO nanorod network-based chip heated up to 400 °C versus three alcohol vapors, ethanol, isopropanol and butanol, at approx. 0.2−5 ppm concentrations when mixed with dry air. The results indicate that the developed chip is highly sensitive to these analytes with a detection limit down to the sub-ppm range. Due to the pristine differences in ZnO nanorod network density the chip yields a vector signal which enables the discrimination of various alcohols at a reasonable degree via processing by linear discriminant analysis even at a sub-ppm concentration range suitable for practical applications.
ISSN:1424-8220