Clarifying the Translational Pausing Landscape in Bacteria by Ribosome Profiling

The rate of protein synthesis varies according to the mRNA sequence in ways that affect gene expression. Global analysis of translational pausing is now possible with ribosome profiling. Here, we revisit an earlier report that Shine-Dalgarno sequences are the major determinant of translational pausi...

Full description

Bibliographic Details
Main Authors: Fuad Mohammad, Christopher J. Woolstenhulme, Rachel Green, Allen R. Buskirk
Format: Article
Language:English
Published: Elsevier 2016-02-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124715015296
Description
Summary:The rate of protein synthesis varies according to the mRNA sequence in ways that affect gene expression. Global analysis of translational pausing is now possible with ribosome profiling. Here, we revisit an earlier report that Shine-Dalgarno sequences are the major determinant of translational pausing in bacteria. Using refinements in the profiling method as well as biochemical assays, we find that SD motifs have little (if any) effect on elongation rates. We argue that earlier evidence of pausing arose from two factors. First, in previous analyses, pauses at Gly codons were difficult to distinguish from pauses at SD motifs. Second, and more importantly, the initial study preferentially isolated long ribosome-protected mRNA fragments that are enriched in SD motifs. These findings clarify the landscape of translational pausing in bacteria as observed by ribosome profiling.
ISSN:2211-1247