Surface Heat Budget over the North Sea in Climate Change Simulations
An ensemble of regional climate change scenarios for the North Sea is validated and analyzed. Five Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Models (GCMs) using three different Representative Concentration Pathways (RCPs) have been downscaled with the coupled atmosphe...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-05-01
|
Series: | Atmosphere |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4433/10/5/272 |
_version_ | 1819001518263631872 |
---|---|
author | Christian Dieterich Shiyu Wang Semjon Schimanke Matthias Gröger Birgit Klein Robinson Hordoir Patrick Samuelsson Ye Liu Lars Axell Anders Höglund H. E. Markus Meier |
author_facet | Christian Dieterich Shiyu Wang Semjon Schimanke Matthias Gröger Birgit Klein Robinson Hordoir Patrick Samuelsson Ye Liu Lars Axell Anders Höglund H. E. Markus Meier |
author_sort | Christian Dieterich |
collection | DOAJ |
description | An ensemble of regional climate change scenarios for the North Sea is validated and analyzed. Five Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Models (GCMs) using three different Representative Concentration Pathways (RCPs) have been downscaled with the coupled atmosphere–ice–ocean model RCA4-NEMO. Validation of sea surface temperature (SST) against different datasets suggests that the model results are well within the spread of observational datasets. The ensemble mean SST with a bias of less than 1 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C is the solution that fits the observations best and underlines the importance of ensemble modeling. The exchange of momentum, heat, and freshwater between atmosphere and ocean in the regional, coupled model compares well with available datasets. The climatological seasonal cycles of these fluxes are within the 95% confidence limits of the datasets. Towards the end of the 21st century the projected North Sea SST increases by 1.5 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C (RCP 2.6), 2 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C (RCP 4.5), and 4 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C (RCP 8.5), respectively. Under this change the North Sea develops a specific pattern of the climate change signal for the air–sea temperature difference and latent heat flux in the RCP 4.5 and 8.5 scenarios. In the RCP 8.5 scenario the amplitude of the spatial heat flux anomaly increases to 5 W/m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>2</mn> </msup> </semantics> </math> </inline-formula> at the end of the century. Different hypotheses are discussed that could contribute to the spatially non-uniform change in air–sea interaction. The most likely cause for an increased latent heat loss in the central western North Sea is a drier atmosphere towards the end of the century. Drier air in the lee of the British Isles affects the balance of the surface heat budget of the North Sea. This effect is an example of how regional characteristics modulate global climate change. For climate change projections on regional scales it is important to resolve processes and feedbacks at regional scales. |
first_indexed | 2024-12-20T22:50:29Z |
format | Article |
id | doaj.art-2248652f6f7344a499c92d9a951c8a1a |
institution | Directory Open Access Journal |
issn | 2073-4433 |
language | English |
last_indexed | 2024-12-20T22:50:29Z |
publishDate | 2019-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Atmosphere |
spelling | doaj.art-2248652f6f7344a499c92d9a951c8a1a2022-12-21T19:24:16ZengMDPI AGAtmosphere2073-44332019-05-0110527210.3390/atmos10050272atmos10050272Surface Heat Budget over the North Sea in Climate Change SimulationsChristian Dieterich0Shiyu Wang1Semjon Schimanke2Matthias Gröger3Birgit Klein4Robinson Hordoir5Patrick Samuelsson6Ye Liu7Lars Axell8Anders Höglund9H. E. Markus Meier10Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, SwedenSwedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, SwedenSwedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, SwedenSwedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, SwedenFederal Maritime and Hydrographic Agency, Bernhard-Nocht-Str. 78, 20359 Hamburg, GermanySwedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, SwedenSwedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, SwedenSwedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, SwedenSwedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, SwedenSwedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, SwedenSwedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, SwedenAn ensemble of regional climate change scenarios for the North Sea is validated and analyzed. Five Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Models (GCMs) using three different Representative Concentration Pathways (RCPs) have been downscaled with the coupled atmosphere–ice–ocean model RCA4-NEMO. Validation of sea surface temperature (SST) against different datasets suggests that the model results are well within the spread of observational datasets. The ensemble mean SST with a bias of less than 1 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C is the solution that fits the observations best and underlines the importance of ensemble modeling. The exchange of momentum, heat, and freshwater between atmosphere and ocean in the regional, coupled model compares well with available datasets. The climatological seasonal cycles of these fluxes are within the 95% confidence limits of the datasets. Towards the end of the 21st century the projected North Sea SST increases by 1.5 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C (RCP 2.6), 2 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C (RCP 4.5), and 4 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C (RCP 8.5), respectively. Under this change the North Sea develops a specific pattern of the climate change signal for the air–sea temperature difference and latent heat flux in the RCP 4.5 and 8.5 scenarios. In the RCP 8.5 scenario the amplitude of the spatial heat flux anomaly increases to 5 W/m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>2</mn> </msup> </semantics> </math> </inline-formula> at the end of the century. Different hypotheses are discussed that could contribute to the spatially non-uniform change in air–sea interaction. The most likely cause for an increased latent heat loss in the central western North Sea is a drier atmosphere towards the end of the century. Drier air in the lee of the British Isles affects the balance of the surface heat budget of the North Sea. This effect is an example of how regional characteristics modulate global climate change. For climate change projections on regional scales it is important to resolve processes and feedbacks at regional scales.https://www.mdpi.com/2073-4433/10/5/272North Seaclimate changeair–sea exchangeensembleRCP scenarioscoupled regional modelRCMRCA4-NEMO |
spellingShingle | Christian Dieterich Shiyu Wang Semjon Schimanke Matthias Gröger Birgit Klein Robinson Hordoir Patrick Samuelsson Ye Liu Lars Axell Anders Höglund H. E. Markus Meier Surface Heat Budget over the North Sea in Climate Change Simulations Atmosphere North Sea climate change air–sea exchange ensemble RCP scenarios coupled regional model RCM RCA4-NEMO |
title | Surface Heat Budget over the North Sea in Climate Change Simulations |
title_full | Surface Heat Budget over the North Sea in Climate Change Simulations |
title_fullStr | Surface Heat Budget over the North Sea in Climate Change Simulations |
title_full_unstemmed | Surface Heat Budget over the North Sea in Climate Change Simulations |
title_short | Surface Heat Budget over the North Sea in Climate Change Simulations |
title_sort | surface heat budget over the north sea in climate change simulations |
topic | North Sea climate change air–sea exchange ensemble RCP scenarios coupled regional model RCM RCA4-NEMO |
url | https://www.mdpi.com/2073-4433/10/5/272 |
work_keys_str_mv | AT christiandieterich surfaceheatbudgetoverthenorthseainclimatechangesimulations AT shiyuwang surfaceheatbudgetoverthenorthseainclimatechangesimulations AT semjonschimanke surfaceheatbudgetoverthenorthseainclimatechangesimulations AT matthiasgroger surfaceheatbudgetoverthenorthseainclimatechangesimulations AT birgitklein surfaceheatbudgetoverthenorthseainclimatechangesimulations AT robinsonhordoir surfaceheatbudgetoverthenorthseainclimatechangesimulations AT patricksamuelsson surfaceheatbudgetoverthenorthseainclimatechangesimulations AT yeliu surfaceheatbudgetoverthenorthseainclimatechangesimulations AT larsaxell surfaceheatbudgetoverthenorthseainclimatechangesimulations AT andershoglund surfaceheatbudgetoverthenorthseainclimatechangesimulations AT hemarkusmeier surfaceheatbudgetoverthenorthseainclimatechangesimulations |