Faculty Performance Evaluation through Multi-Criteria Decision Analysis Using Interval-Valued Fermatean Neutrosophic Sets

The Neutrosophic Set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi><mi>e</mi>...

Full description

Bibliographic Details
Main Authors: Said Broumi, Raman Sundareswaran, Marayanagaraj Shanmugapriya, Prem Kumar Singh, Michael Voskoglou, Mohamed Talea
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/18/3817
_version_ 1797579004655435776
author Said Broumi
Raman Sundareswaran
Marayanagaraj Shanmugapriya
Prem Kumar Singh
Michael Voskoglou
Mohamed Talea
author_facet Said Broumi
Raman Sundareswaran
Marayanagaraj Shanmugapriya
Prem Kumar Singh
Michael Voskoglou
Mohamed Talea
author_sort Said Broumi
collection DOAJ
description The Neutrosophic Set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> represents the uncertainty in data with fuzzy attributes beyond true and false values independently. The problem arises when the summation of true <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="bold-script">T</mi><mi mathvariant="bold-italic">r</mi><mo>)</mo></mrow></semantics></math></inline-formula>, false <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="bold-script">F</mi><mi mathvariant="bold-italic">a</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and indeterminacy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="|"><mrow><mi mathvariant="bold-script">I</mi><mi mathvariant="bold-italic">n</mi></mrow></mfenced></mrow></semantics></math></inline-formula> values crosses the membership value of one, that is, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-script">T</mi><mi mathvariant="bold-italic">r</mi><mo>+</mo><mi mathvariant="bold-script">I</mi><mi mathvariant="bold-italic">n</mi><mo>+</mo><mi mathvariant="bold-script">F</mi><mi mathvariant="bold-italic">a</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>. It becomes more crucial during decision-making processes like medical diagnoses or any data sets where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-script">T</mi><mi mathvariant="bold-italic">r</mi><mo>+</mo><mi mathvariant="bold-script">I</mi><mi mathvariant="bold-italic">n</mi><mo>+</mo><mi mathvariant="bold-script">F</mi><mi mathvariant="bold-italic">a</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>. To achieve this goal, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> is recently introduced. This study employs the Interval-Valued Fermatean Neutrosophic Set (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>V</mi><mi>F</mi><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>) as its chosen framework to address instances of partial ignorance within the domains of truth, falsehood, or uncertainty. This selection stands out due to its unique approach to managing such complexities within multi-decision processes when compared to alternative methodologies. Furthermore, the proposed method reduces the propensity for information loss often encountered in other techniques. IVFNS excels at preserving intricate relationships between variables even when dealing with incomplete or vague information. In the present work, we introduce the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>V</mi><mi>F</mi><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>, which deals with partial ignorance in true, false, or uncertain regions independently for multi-decision processes. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>V</mi><mi>F</mi><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> contains the interval-valued <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="bold-script">T</mi><mi mathvariant="bold-italic">r</mi></mrow><mrow><mi mathvariant="bold-italic">m</mi><mi mathvariant="bold-italic">e</mi><mi mathvariant="bold-italic">m</mi><mi mathvariant="bold-italic">b</mi><mi mathvariant="bold-italic">e</mi><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">s</mi><mi mathvariant="bold-italic">h</mi><mi mathvariant="bold-italic">i</mi><mi mathvariant="bold-italic">p</mi></mrow></msub></mrow></semantics></math></inline-formula> value, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="bold-script">I</mi><mi mathvariant="bold-italic">n</mi></mrow><mrow><mi mathvariant="bold-italic">m</mi><mi mathvariant="bold-italic">e</mi><mi mathvariant="bold-italic">m</mi><mi mathvariant="bold-italic">b</mi><mi mathvariant="bold-italic">e</mi><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">s</mi><mi mathvariant="bold-italic">h</mi><mi mathvariant="bold-italic">i</mi><mi mathvariant="bold-italic">p</mi></mrow></msub></mrow></semantics></math></inline-formula> value, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="bold-script">F</mi><mi mathvariant="bold-italic">a</mi></mrow><mrow><mi mathvariant="bold-italic">m</mi><mi mathvariant="bold-italic">e</mi><mi mathvariant="bold-italic">m</mi><mi mathvariant="bold-italic">b</mi><mi mathvariant="bold-italic">e</mi><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">s</mi><mi mathvariant="bold-italic">h</mi><mi mathvariant="bold-italic">i</mi><mi mathvariant="bold-italic">p</mi></mrow></msub></mrow></semantics></math></inline-formula> for knowledge representation. The algebraic properties and set theory between the interval-valued <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> have also been presented with an illustrative example.
first_indexed 2024-03-10T22:29:41Z
format Article
id doaj.art-224c96c57470498bb69ba5f03051ac32
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T22:29:41Z
publishDate 2023-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-224c96c57470498bb69ba5f03051ac322023-11-19T11:48:01ZengMDPI AGMathematics2227-73902023-09-011118381710.3390/math11183817Faculty Performance Evaluation through Multi-Criteria Decision Analysis Using Interval-Valued Fermatean Neutrosophic SetsSaid Broumi0Raman Sundareswaran1Marayanagaraj Shanmugapriya2Prem Kumar Singh3Michael Voskoglou4Mohamed Talea5Laboratory of Information Processing, Faculty of Science Ben M’Sik, University of Hassan II, Casablanca 20000, MoroccoDepartment of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, IndiaDepartment of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, IndiaDepartment of Computer Science and Engineering, Gandhi Institute of Technology and Management, Visakhapatnam 530045, IndiaSchool of Engineering, University of Peloponnese, 26334 Patras, GreeceLaboratory of Information Processing, Faculty of Science Ben M’Sik, University of Hassan II, Casablanca 20000, MoroccoThe Neutrosophic Set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> represents the uncertainty in data with fuzzy attributes beyond true and false values independently. The problem arises when the summation of true <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="bold-script">T</mi><mi mathvariant="bold-italic">r</mi><mo>)</mo></mrow></semantics></math></inline-formula>, false <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="bold-script">F</mi><mi mathvariant="bold-italic">a</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and indeterminacy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="|"><mrow><mi mathvariant="bold-script">I</mi><mi mathvariant="bold-italic">n</mi></mrow></mfenced></mrow></semantics></math></inline-formula> values crosses the membership value of one, that is, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-script">T</mi><mi mathvariant="bold-italic">r</mi><mo>+</mo><mi mathvariant="bold-script">I</mi><mi mathvariant="bold-italic">n</mi><mo>+</mo><mi mathvariant="bold-script">F</mi><mi mathvariant="bold-italic">a</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>. It becomes more crucial during decision-making processes like medical diagnoses or any data sets where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-script">T</mi><mi mathvariant="bold-italic">r</mi><mo>+</mo><mi mathvariant="bold-script">I</mi><mi mathvariant="bold-italic">n</mi><mo>+</mo><mi mathvariant="bold-script">F</mi><mi mathvariant="bold-italic">a</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>. To achieve this goal, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> is recently introduced. This study employs the Interval-Valued Fermatean Neutrosophic Set (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>V</mi><mi>F</mi><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>) as its chosen framework to address instances of partial ignorance within the domains of truth, falsehood, or uncertainty. This selection stands out due to its unique approach to managing such complexities within multi-decision processes when compared to alternative methodologies. Furthermore, the proposed method reduces the propensity for information loss often encountered in other techniques. IVFNS excels at preserving intricate relationships between variables even when dealing with incomplete or vague information. In the present work, we introduce the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>V</mi><mi>F</mi><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>, which deals with partial ignorance in true, false, or uncertain regions independently for multi-decision processes. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>V</mi><mi>F</mi><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> contains the interval-valued <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="bold-script">T</mi><mi mathvariant="bold-italic">r</mi></mrow><mrow><mi mathvariant="bold-italic">m</mi><mi mathvariant="bold-italic">e</mi><mi mathvariant="bold-italic">m</mi><mi mathvariant="bold-italic">b</mi><mi mathvariant="bold-italic">e</mi><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">s</mi><mi mathvariant="bold-italic">h</mi><mi mathvariant="bold-italic">i</mi><mi mathvariant="bold-italic">p</mi></mrow></msub></mrow></semantics></math></inline-formula> value, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="bold-script">I</mi><mi mathvariant="bold-italic">n</mi></mrow><mrow><mi mathvariant="bold-italic">m</mi><mi mathvariant="bold-italic">e</mi><mi mathvariant="bold-italic">m</mi><mi mathvariant="bold-italic">b</mi><mi mathvariant="bold-italic">e</mi><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">s</mi><mi mathvariant="bold-italic">h</mi><mi mathvariant="bold-italic">i</mi><mi mathvariant="bold-italic">p</mi></mrow></msub></mrow></semantics></math></inline-formula> value, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="bold-script">F</mi><mi mathvariant="bold-italic">a</mi></mrow><mrow><mi mathvariant="bold-italic">m</mi><mi mathvariant="bold-italic">e</mi><mi mathvariant="bold-italic">m</mi><mi mathvariant="bold-italic">b</mi><mi mathvariant="bold-italic">e</mi><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">s</mi><mi mathvariant="bold-italic">h</mi><mi mathvariant="bold-italic">i</mi><mi mathvariant="bold-italic">p</mi></mrow></msub></mrow></semantics></math></inline-formula> for knowledge representation. The algebraic properties and set theory between the interval-valued <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> have also been presented with an illustrative example.https://www.mdpi.com/2227-7390/11/18/3817Fermatean neutrosophic setsinterval-valued Fermatean neutrosophic setsfaculty performance evaluationmulticriteria decision analysis
spellingShingle Said Broumi
Raman Sundareswaran
Marayanagaraj Shanmugapriya
Prem Kumar Singh
Michael Voskoglou
Mohamed Talea
Faculty Performance Evaluation through Multi-Criteria Decision Analysis Using Interval-Valued Fermatean Neutrosophic Sets
Mathematics
Fermatean neutrosophic sets
interval-valued Fermatean neutrosophic sets
faculty performance evaluation
multicriteria decision analysis
title Faculty Performance Evaluation through Multi-Criteria Decision Analysis Using Interval-Valued Fermatean Neutrosophic Sets
title_full Faculty Performance Evaluation through Multi-Criteria Decision Analysis Using Interval-Valued Fermatean Neutrosophic Sets
title_fullStr Faculty Performance Evaluation through Multi-Criteria Decision Analysis Using Interval-Valued Fermatean Neutrosophic Sets
title_full_unstemmed Faculty Performance Evaluation through Multi-Criteria Decision Analysis Using Interval-Valued Fermatean Neutrosophic Sets
title_short Faculty Performance Evaluation through Multi-Criteria Decision Analysis Using Interval-Valued Fermatean Neutrosophic Sets
title_sort faculty performance evaluation through multi criteria decision analysis using interval valued fermatean neutrosophic sets
topic Fermatean neutrosophic sets
interval-valued Fermatean neutrosophic sets
faculty performance evaluation
multicriteria decision analysis
url https://www.mdpi.com/2227-7390/11/18/3817
work_keys_str_mv AT saidbroumi facultyperformanceevaluationthroughmulticriteriadecisionanalysisusingintervalvaluedfermateanneutrosophicsets
AT ramansundareswaran facultyperformanceevaluationthroughmulticriteriadecisionanalysisusingintervalvaluedfermateanneutrosophicsets
AT marayanagarajshanmugapriya facultyperformanceevaluationthroughmulticriteriadecisionanalysisusingintervalvaluedfermateanneutrosophicsets
AT premkumarsingh facultyperformanceevaluationthroughmulticriteriadecisionanalysisusingintervalvaluedfermateanneutrosophicsets
AT michaelvoskoglou facultyperformanceevaluationthroughmulticriteriadecisionanalysisusingintervalvaluedfermateanneutrosophicsets
AT mohamedtalea facultyperformanceevaluationthroughmulticriteriadecisionanalysisusingintervalvaluedfermateanneutrosophicsets