Modeling the Epidemic Growth of Preprints on COVID-19 and SARS-CoV-2
The response of the scientific community to the global health emergency caused by the COVID-19 pandemic has produced an unprecedented number of manuscripts in a short period of time, the vast majority of which have been shared in the form of preprints posted on online preprint repositories before pe...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-03-01
|
Series: | Frontiers in Physics |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fphy.2021.603502/full |
_version_ | 1818742065526210560 |
---|---|
author | Giovani L. Vasconcelos Luan P. Cordeiro Gerson C. Duarte-Filho Arthur A. Brum |
author_facet | Giovani L. Vasconcelos Luan P. Cordeiro Gerson C. Duarte-Filho Arthur A. Brum |
author_sort | Giovani L. Vasconcelos |
collection | DOAJ |
description | The response of the scientific community to the global health emergency caused by the COVID-19 pandemic has produced an unprecedented number of manuscripts in a short period of time, the vast majority of which have been shared in the form of preprints posted on online preprint repositories before peer review. This surge in preprint publications has in itself attracted considerable attention, although mostly in the bibliometrics literature. In the present study we apply a mathematical growth model, known as the generalized Richards model, to describe the time evolution of the cumulative number of COVID-19 related preprints. This mathematical approach allows us to infer several important aspects concerning the underlying growth dynamics, such as its current stage and its possible evolution in the near future. We also analyze the rank-frequency distribution of preprints servers, ordered by the number of COVID-19 preprints they host, and find that it follows a power law in the low rank (high frequency) region, with the high rank (low frequency) tail being better described by a q-exponential function. The Zipf-like law in the high frequency regime indicates the presence of a cumulative advantage effect, whereby servers that already have more preprints receive more submissions. |
first_indexed | 2024-12-18T02:06:36Z |
format | Article |
id | doaj.art-2266ea05b5604a87991354f99e25593f |
institution | Directory Open Access Journal |
issn | 2296-424X |
language | English |
last_indexed | 2024-12-18T02:06:36Z |
publishDate | 2021-03-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Physics |
spelling | doaj.art-2266ea05b5604a87991354f99e25593f2022-12-21T21:24:34ZengFrontiers Media S.A.Frontiers in Physics2296-424X2021-03-01910.3389/fphy.2021.603502603502Modeling the Epidemic Growth of Preprints on COVID-19 and SARS-CoV-2Giovani L. Vasconcelos0Luan P. Cordeiro1Gerson C. Duarte-Filho2Arthur A. Brum3Departamento de Física, Universidade Federal do Paraná, Curitiba, BrazilDepartamento de Física, Universidade Federal do Paraná, Curitiba, BrazilDepartamento de Física, Universidade Federal de Sergipe, São Cristóvão, BrazilDepartamento de Física, Universidade Federal de Pernambuco, Recife, BrazilThe response of the scientific community to the global health emergency caused by the COVID-19 pandemic has produced an unprecedented number of manuscripts in a short period of time, the vast majority of which have been shared in the form of preprints posted on online preprint repositories before peer review. This surge in preprint publications has in itself attracted considerable attention, although mostly in the bibliometrics literature. In the present study we apply a mathematical growth model, known as the generalized Richards model, to describe the time evolution of the cumulative number of COVID-19 related preprints. This mathematical approach allows us to infer several important aspects concerning the underlying growth dynamics, such as its current stage and its possible evolution in the near future. We also analyze the rank-frequency distribution of preprints servers, ordered by the number of COVID-19 preprints they host, and find that it follows a power law in the low rank (high frequency) region, with the high rank (low frequency) tail being better described by a q-exponential function. The Zipf-like law in the high frequency regime indicates the presence of a cumulative advantage effect, whereby servers that already have more preprints receive more submissions.https://www.frontiersin.org/articles/10.3389/fphy.2021.603502/fullCOVID-19growth modelslogistic (Verhulst) growth modelrank-frequency curveZipf's law |
spellingShingle | Giovani L. Vasconcelos Luan P. Cordeiro Gerson C. Duarte-Filho Arthur A. Brum Modeling the Epidemic Growth of Preprints on COVID-19 and SARS-CoV-2 Frontiers in Physics COVID-19 growth models logistic (Verhulst) growth model rank-frequency curve Zipf's law |
title | Modeling the Epidemic Growth of Preprints on COVID-19 and SARS-CoV-2 |
title_full | Modeling the Epidemic Growth of Preprints on COVID-19 and SARS-CoV-2 |
title_fullStr | Modeling the Epidemic Growth of Preprints on COVID-19 and SARS-CoV-2 |
title_full_unstemmed | Modeling the Epidemic Growth of Preprints on COVID-19 and SARS-CoV-2 |
title_short | Modeling the Epidemic Growth of Preprints on COVID-19 and SARS-CoV-2 |
title_sort | modeling the epidemic growth of preprints on covid 19 and sars cov 2 |
topic | COVID-19 growth models logistic (Verhulst) growth model rank-frequency curve Zipf's law |
url | https://www.frontiersin.org/articles/10.3389/fphy.2021.603502/full |
work_keys_str_mv | AT giovanilvasconcelos modelingtheepidemicgrowthofpreprintsoncovid19andsarscov2 AT luanpcordeiro modelingtheepidemicgrowthofpreprintsoncovid19andsarscov2 AT gersoncduartefilho modelingtheepidemicgrowthofpreprintsoncovid19andsarscov2 AT arthurabrum modelingtheepidemicgrowthofpreprintsoncovid19andsarscov2 |