Center problem for generalized lambda-omega differential systems

$\Lambda$-$\Omega$ differential systems are the real planar polynomial differential equations of degree $m$ of the form $$ \dot{x}=-y(1+\Lambda)+x\Omega,\quad \dot{y}=x(1+\Lambda)+y\Omega, $$ where $\Lambda=\Lambda(x,y)$ and $\Omega=\Omega(x,y)$ are polynomials of degree at most $m-1$ such th...

Full description

Bibliographic Details
Main Authors: Jaume Llibre, Rafael Ramirez, Valentin Ramirez
Format: Article
Language:English
Published: Texas State University 2018-11-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2018/184/abstr.html
_version_ 1818278033061052416
author Jaume Llibre
Rafael Ramirez
Valentin Ramirez
author_facet Jaume Llibre
Rafael Ramirez
Valentin Ramirez
author_sort Jaume Llibre
collection DOAJ
description $\Lambda$-$\Omega$ differential systems are the real planar polynomial differential equations of degree $m$ of the form $$ \dot{x}=-y(1+\Lambda)+x\Omega,\quad \dot{y}=x(1+\Lambda)+y\Omega, $$ where $\Lambda=\Lambda(x,y)$ and $\Omega=\Omega(x,y)$ are polynomials of degree at most $m-1$ such that $\Lambda(0,0)=\Omega(0,0)=0$. A planar vector field with linear type center can be written as a $\Lambda$-$\Omega$ system if and only if the Poincar\'e-Liapunov first integral is of the form $F=\frac{1}{2}(x^2+y^2)(1+O(x,y))$. The main objective of this article is to study the center problem for $\Lambda$-$\Omega$ systems of degree $m$ with $\Lambda=\mu(a_2x-a_1y)$, and $\Omega=a_1x+a_2y+\sum_{j=2}^{m-1}\Omega_j$, where $\mu,\,a_1,\,a_2$ are constants and $\Omega_j= \Omega_j(x,y)$ is a homogenous polynomial of degree $j$, for $j=2,\dots,m-1$. We prove the following results. Assuming that $m=2,3,4,5$ and $$ (\mu+(m-2))(a^2_1+a^2_2)\ne 0 \quad \text{and}\quad \sum_{j=2}^{m-2}\Omega_j\ne 0 $$ the $\Lambda$-$\Omega$ system has a weak center at the origin if and only if these systems after a linear change of variables $(x,y)\to (X,Y)$ are invariant under the transformations $(X,Y,t)\to (-X,Y,-t)$. If $(\mu+(m-2))(a^2_1+a^2_2)=0$ and $\sum_{j=1}^{m-2}\Omega_j=0$ then the origin is a weak center. We observe that the main difficulty in proving this result for $m>6$ is related to the huge computations.
first_indexed 2024-12-12T23:11:00Z
format Article
id doaj.art-226cef8994964671b53d14d558326f95
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-12T23:11:00Z
publishDate 2018-11-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-226cef8994964671b53d14d558326f952022-12-22T00:08:35ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912018-11-012018184,123Center problem for generalized lambda-omega differential systemsJaume Llibre0Rafael Ramirez1Valentin Ramirez2 Univ. Autonoma de Barcelona, Catalonia, Spain Univ. Rovira i Virgili,Catalans, Spain Univ. Autonoma de Barcelona, Catalonia, Spain $\Lambda$-$\Omega$ differential systems are the real planar polynomial differential equations of degree $m$ of the form $$ \dot{x}=-y(1+\Lambda)+x\Omega,\quad \dot{y}=x(1+\Lambda)+y\Omega, $$ where $\Lambda=\Lambda(x,y)$ and $\Omega=\Omega(x,y)$ are polynomials of degree at most $m-1$ such that $\Lambda(0,0)=\Omega(0,0)=0$. A planar vector field with linear type center can be written as a $\Lambda$-$\Omega$ system if and only if the Poincar\'e-Liapunov first integral is of the form $F=\frac{1}{2}(x^2+y^2)(1+O(x,y))$. The main objective of this article is to study the center problem for $\Lambda$-$\Omega$ systems of degree $m$ with $\Lambda=\mu(a_2x-a_1y)$, and $\Omega=a_1x+a_2y+\sum_{j=2}^{m-1}\Omega_j$, where $\mu,\,a_1,\,a_2$ are constants and $\Omega_j= \Omega_j(x,y)$ is a homogenous polynomial of degree $j$, for $j=2,\dots,m-1$. We prove the following results. Assuming that $m=2,3,4,5$ and $$ (\mu+(m-2))(a^2_1+a^2_2)\ne 0 \quad \text{and}\quad \sum_{j=2}^{m-2}\Omega_j\ne 0 $$ the $\Lambda$-$\Omega$ system has a weak center at the origin if and only if these systems after a linear change of variables $(x,y)\to (X,Y)$ are invariant under the transformations $(X,Y,t)\to (-X,Y,-t)$. If $(\mu+(m-2))(a^2_1+a^2_2)=0$ and $\sum_{j=1}^{m-2}\Omega_j=0$ then the origin is a weak center. We observe that the main difficulty in proving this result for $m>6$ is related to the huge computations.http://ejde.math.txstate.edu/Volumes/2018/184/abstr.htmlLinear type centerDarboux first integralweak centerPoincare-Liapunov theoremReeb integrating factor
spellingShingle Jaume Llibre
Rafael Ramirez
Valentin Ramirez
Center problem for generalized lambda-omega differential systems
Electronic Journal of Differential Equations
Linear type center
Darboux first integral
weak center
Poincare-Liapunov theorem
Reeb integrating factor
title Center problem for generalized lambda-omega differential systems
title_full Center problem for generalized lambda-omega differential systems
title_fullStr Center problem for generalized lambda-omega differential systems
title_full_unstemmed Center problem for generalized lambda-omega differential systems
title_short Center problem for generalized lambda-omega differential systems
title_sort center problem for generalized lambda omega differential systems
topic Linear type center
Darboux first integral
weak center
Poincare-Liapunov theorem
Reeb integrating factor
url http://ejde.math.txstate.edu/Volumes/2018/184/abstr.html
work_keys_str_mv AT jaumellibre centerproblemforgeneralizedlambdaomegadifferentialsystems
AT rafaelramirez centerproblemforgeneralizedlambdaomegadifferentialsystems
AT valentinramirez centerproblemforgeneralizedlambdaomegadifferentialsystems