Structure-Level 3D Building Model Encoding Method for Progressive Transmission

Progressive encoding and transmission, i.e., a crucial technical foundation of 3D Web Geographic Information Systems (WebGIS), addresses the contradiction between massive 3D building data and limited network transmission capacity. Most progressive encoding algorithms, taking vertices, edges or trian...

Full description

Bibliographic Details
Main Authors: Jiwei Dong, Junzhong Tan, Qiang Zhao, Lixia He, Sirui Li, Jiangfeng She
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:ISPRS International Journal of Geo-Information
Subjects:
Online Access:https://www.mdpi.com/2220-9964/10/5/306
Description
Summary:Progressive encoding and transmission, i.e., a crucial technical foundation of 3D Web Geographic Information Systems (WebGIS), addresses the contradiction between massive 3D building data and limited network transmission capacity. Most progressive encoding algorithms, taking vertices, edges or triangles as encoding units, may break the inherent geometric and topological characteristics of 3D building models. Thus, a novel 3D building model encoding method that can maintain the internal characteristics is proposed, which can be used for high-efficiency progressive transmission. With this method, each building is decomposed into three types of fundamental structures: main structure, independent structure and attached structure. A structural topology graph (STG) was constructed based on the connections among structures. Guided by STG, one or more structures were wrapped as the smallest incremental transmission unit, denoted as transmission node. When requested, the real-time position of viewpoint, orientation and visual importance of nodes are used to pick up expected nodes for responding. The results confirm that the proposed method can better maintain the geometric and topological characteristics while encoding 3D building models. While serving for transmission, the proposed method not only effectively reduces the transmission load, but also provides users with a better consistency experience on the building appearance at different simplification levels.
ISSN:2220-9964