Extensive transmission of isoniazid resistant <it>M. tuberculosis</it> and its association with increased multidrug-resistant TB in two rural counties of eastern China: A molecular epidemiological study

<p>Abstract</p> <p>Background</p> <p>The aim of this study was to investigate the molecular characteristics of isoniazid resistant <it>Mycobacterium tuberculosis </it>(MTB), as well as its contribution to the dissemination of multi-drug resistant TB (MDR-TB)...

Full description

Bibliographic Details
Main Authors: Wang Weibing, Jiang Weili, Hoffner Sven, Hu Yi, Xu Biao
Format: Article
Language:English
Published: BMC 2010-02-01
Series:BMC Infectious Diseases
Online Access:http://www.biomedcentral.com/1471-2334/10/43
Description
Summary:<p>Abstract</p> <p>Background</p> <p>The aim of this study was to investigate the molecular characteristics of isoniazid resistant <it>Mycobacterium tuberculosis </it>(MTB), as well as its contribution to the dissemination of multi-drug resistant TB (MDR-TB) in rural areas of eastern China.</p> <p>Methods</p> <p>A population-based epidemiological study was conducted in two rural counties of eastern China from 2004 to 2005. In total, 131 isoniazid resistant MTB isolates were molecularly characterized by DNA sequencing and genotyped by IS<it>6110 </it>restriction fragment length polymorphism (RFLP) and spoligotyping.</p> <p>Results</p> <p>The <it>katG</it>315Thr mutation was observed in 74 of 131 isoniazid resistant isolates and more likely to be MDR-TB (48.6%) and have mutations in <it>rpoB </it>gene (47.3%). Spoligotyping identified 80.2% of isoniazid resistant MTB isolates as belonging to the Beijing family. Cluster analysis by genotyping based on IS<it>6110 </it>RFLP, showed that 48.1% isoniazid resistant isolates were grouped into 26 clusters and <it>katG</it>315Thr mutants had a significantly higher clustering proportion compared to those with <it>katG </it>wild type (73%.vs.18%; OR, 12.70; 95%CI, 6.357-14.80). Thirty-one of the 53 MDR-TB isolates were observed in 19 clusters. Of these clusters, isoniazid resistance in MDR-TB isolates was all due to the <it>katG</it>315Thr mutation; 18 clusters also contained mono-isoniazid resistant and other isoniazid resistant isolates.</p> <p>Conclusions</p> <p>These results highlighted that isoniazid resistant MTB especially with <it>katG</it>315Thr is likely to be clustered in a community, develop extra resistance to rifampicin and become MDR-TB in Chinese rural settings.</p>
ISSN:1471-2334