Error propagation in spectrometric functions of soil organic carbon

<p>Soil organic carbon (SOC) plays a major role concerning chemical, physical, and biological soil properties and functions. To get a better understanding of how soil management affects the SOC content, the precise monitoring of SOC on long-term field experiments (LTFEs) is needed. Visible and...

Full description

Bibliographic Details
Main Authors: M. Ellinger, I. Merbach, U. Werban, M. Ließ
Format: Article
Language:English
Published: Copernicus Publications 2019-09-01
Series:SOIL
Online Access:https://www.soil-journal.net/5/275/2019/soil-5-275-2019.pdf
_version_ 1818390940167962624
author M. Ellinger
I. Merbach
U. Werban
M. Ließ
author_facet M. Ellinger
I. Merbach
U. Werban
M. Ließ
author_sort M. Ellinger
collection DOAJ
description <p>Soil organic carbon (SOC) plays a major role concerning chemical, physical, and biological soil properties and functions. To get a better understanding of how soil management affects the SOC content, the precise monitoring of SOC on long-term field experiments (LTFEs) is needed. Visible and near-infrared (Vis–NIR) reflectance spectrometry provides an inexpensive and fast opportunity to complement conventional SOC analysis and has often been used to predict SOC. For this study, 100 soil samples were collected at an LTFE in central Germany by two different sampling designs. SOC values ranged between 1.5&thinsp;% and 2.9&thinsp;%. Regression models were built using partial least square regression (PLSR). In order to build robust models, a nested repeated 5-fold group cross-validation (CV) approach was used, which comprised model tuning and evaluation. Various aspects that influence the obtained error measure were analysed and discussed. Four pre-processing methods were compared in order to extract information regarding SOC from the spectra. Finally, the best model performance which did not consider error propagation corresponded to a mean RMSE<span class="inline-formula"><sub>MV</sub></span> of 0.12&thinsp;% SOC (<span class="inline-formula"><i>R</i><sup>2</sup>=0.86</span>). This model performance was impaired by <span class="inline-formula">Δ</span>RMSE<span class="inline-formula"><sub>MV</sub>=0.04</span>&thinsp;% SOC while considering input data uncertainties (<span class="inline-formula">Δ<i>R</i><sup>2</sup>=0.09</span>), and by <span class="inline-formula">Δ</span>RMSE<span class="inline-formula"><sub>MV</sub>=0.12</span>&thinsp;% SOC (<span class="inline-formula">Δ<i>R</i><sup>2</sup>=0.17</span>) considering an inappropriate pre-processing. The effect of the sampling design amounted to a <span class="inline-formula">Δ</span>RMSE<span class="inline-formula"><sub>MV</sub></span> of 0.02&thinsp;% SOC (<span class="inline-formula">Δ<i>R</i><sup>2</sup>=0.05</span>). Overall, we emphasize the necessity of transparent and precise documentation of the measurement protocol, the model building, and validation procedure in order to assess model performance in a comprehensive way and allow for a comparison between publications. The consideration of uncertainty propagation is essential when applying Vis–NIR spectrometry for soil monitoring.</p>
first_indexed 2024-12-14T05:05:36Z
format Article
id doaj.art-2285656b834b438385917f0f57be255d
institution Directory Open Access Journal
issn 2199-3971
2199-398X
language English
last_indexed 2024-12-14T05:05:36Z
publishDate 2019-09-01
publisher Copernicus Publications
record_format Article
series SOIL
spelling doaj.art-2285656b834b438385917f0f57be255d2022-12-21T23:16:07ZengCopernicus PublicationsSOIL2199-39712199-398X2019-09-01527528810.5194/soil-5-275-2019Error propagation in spectrometric functions of soil organic carbonM. Ellinger0I. Merbach1U. Werban2M. Ließ3Department of Soil System Science, Helmholtz Centre for Environmental Research – UFZ, Halle (Saale), GermanyDepartment of Community Ecology, Helmholtz Centre for Environmental Research – UFZ, Bad Lauchstädt, GermanyDepartment of Monitoring and Exploration Technologies, Helmholtz Centre for Environmental Research – UFZ, Leipzig, GermanyDepartment of Soil System Science, Helmholtz Centre for Environmental Research – UFZ, Halle (Saale), Germany<p>Soil organic carbon (SOC) plays a major role concerning chemical, physical, and biological soil properties and functions. To get a better understanding of how soil management affects the SOC content, the precise monitoring of SOC on long-term field experiments (LTFEs) is needed. Visible and near-infrared (Vis–NIR) reflectance spectrometry provides an inexpensive and fast opportunity to complement conventional SOC analysis and has often been used to predict SOC. For this study, 100 soil samples were collected at an LTFE in central Germany by two different sampling designs. SOC values ranged between 1.5&thinsp;% and 2.9&thinsp;%. Regression models were built using partial least square regression (PLSR). In order to build robust models, a nested repeated 5-fold group cross-validation (CV) approach was used, which comprised model tuning and evaluation. Various aspects that influence the obtained error measure were analysed and discussed. Four pre-processing methods were compared in order to extract information regarding SOC from the spectra. Finally, the best model performance which did not consider error propagation corresponded to a mean RMSE<span class="inline-formula"><sub>MV</sub></span> of 0.12&thinsp;% SOC (<span class="inline-formula"><i>R</i><sup>2</sup>=0.86</span>). This model performance was impaired by <span class="inline-formula">Δ</span>RMSE<span class="inline-formula"><sub>MV</sub>=0.04</span>&thinsp;% SOC while considering input data uncertainties (<span class="inline-formula">Δ<i>R</i><sup>2</sup>=0.09</span>), and by <span class="inline-formula">Δ</span>RMSE<span class="inline-formula"><sub>MV</sub>=0.12</span>&thinsp;% SOC (<span class="inline-formula">Δ<i>R</i><sup>2</sup>=0.17</span>) considering an inappropriate pre-processing. The effect of the sampling design amounted to a <span class="inline-formula">Δ</span>RMSE<span class="inline-formula"><sub>MV</sub></span> of 0.02&thinsp;% SOC (<span class="inline-formula">Δ<i>R</i><sup>2</sup>=0.05</span>). Overall, we emphasize the necessity of transparent and precise documentation of the measurement protocol, the model building, and validation procedure in order to assess model performance in a comprehensive way and allow for a comparison between publications. The consideration of uncertainty propagation is essential when applying Vis–NIR spectrometry for soil monitoring.</p>https://www.soil-journal.net/5/275/2019/soil-5-275-2019.pdf
spellingShingle M. Ellinger
I. Merbach
U. Werban
M. Ließ
Error propagation in spectrometric functions of soil organic carbon
SOIL
title Error propagation in spectrometric functions of soil organic carbon
title_full Error propagation in spectrometric functions of soil organic carbon
title_fullStr Error propagation in spectrometric functions of soil organic carbon
title_full_unstemmed Error propagation in spectrometric functions of soil organic carbon
title_short Error propagation in spectrometric functions of soil organic carbon
title_sort error propagation in spectrometric functions of soil organic carbon
url https://www.soil-journal.net/5/275/2019/soil-5-275-2019.pdf
work_keys_str_mv AT mellinger errorpropagationinspectrometricfunctionsofsoilorganiccarbon
AT imerbach errorpropagationinspectrometricfunctionsofsoilorganiccarbon
AT uwerban errorpropagationinspectrometricfunctionsofsoilorganiccarbon
AT mließ errorpropagationinspectrometricfunctionsofsoilorganiccarbon