Impact of irradiation on physico-chemical and nutritional properties of fruits and vegetables: A mini review
Background: Fruits and vegetables are healthy because they contain good nutrients and secondary metabolites that keep the body healthy and disease-free. Post-harvest losses of fresh fruits and vegetables limit access and availability as a result of foodborne infections and poor storage technologies....
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-10-01
|
Series: | Heliyon |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S240584402202206X |
_version_ | 1811257244622258176 |
---|---|
author | Pooja Bhatnagar Prateek Gururani Bhawna Bisht Vinod Kumar Navin Kumar Raja Joshi Mikhail S. Vlaskin |
author_facet | Pooja Bhatnagar Prateek Gururani Bhawna Bisht Vinod Kumar Navin Kumar Raja Joshi Mikhail S. Vlaskin |
author_sort | Pooja Bhatnagar |
collection | DOAJ |
description | Background: Fruits and vegetables are healthy because they contain good nutrients and secondary metabolites that keep the body healthy and disease-free. Post-harvest losses of fresh fruits and vegetables limit access and availability as a result of foodborne infections and poor storage technologies. The selection of fruits and vegetables depend on the starting microbial load, the size of fruits and vegetables, and the type of infrastructure. Scope and approach: Despite the positive impacts of conventional thermal (roasting, boiling, blanching) and some non-thermal processing techniques such as High Pressure Processing (HPP), Pulse Electric Field (PEF), Cold Plasma Technology (CPT) on shelf-life extension, their use is commonly associated with a number of negative consequences on product quality such as cold plasma treatment increases the acidity and rate of lipid oxidation and further decrease the colour intensity and firmness of products. Similarly, in high pressure processing and pulse electric field there is no spore inactivation and they further limit their application to semi-moist and liquid foods. On that account, food irradiation, a non-thermal technique, is currently being used for post-harvest preservation, which could be very useful in retaining the keeping quality of various fresh and dehydrated products without negatively affecting their versatility and physico-chemical, nutritional and sensory properties. Conclusion: Existing studies have communicated the effective influence of irradiation technology on nutritional, sensory, and physico-chemical properties of multiple fruits and vegetables accompanying consequential deduction in microbial load throughout the storage period. Food irradiation can be recognized as a prevalent, safe and promising technology however, still is not fully exploited on a magnified scale. The consumer acceptance of processed products has always been a significant challenge for innovative food processing technologies such as food irradiation. Therefore, owing to current review, additional scientific evidences and efforts are still demanded for increasing its technological request. |
first_indexed | 2024-04-12T17:53:28Z |
format | Article |
id | doaj.art-2286f625d3604ff393eeb2f537e38650 |
institution | Directory Open Access Journal |
issn | 2405-8440 |
language | English |
last_indexed | 2024-04-12T17:53:28Z |
publishDate | 2022-10-01 |
publisher | Elsevier |
record_format | Article |
series | Heliyon |
spelling | doaj.art-2286f625d3604ff393eeb2f537e386502022-12-22T03:22:25ZengElsevierHeliyon2405-84402022-10-01810e10918Impact of irradiation on physico-chemical and nutritional properties of fruits and vegetables: A mini reviewPooja Bhatnagar0Prateek Gururani1Bhawna Bisht2Vinod Kumar3Navin Kumar4Raja Joshi5Mikhail S. Vlaskin6Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, IndiaDepartment of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India; Corresponding author.Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, IndiaDepartment of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russian Federation; Corresponding author.Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, IndiaSchool of Agriculture, Uttaranchal University, Dehradun, Uttarakhand, 248007, IndiaJoint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, 117198, Russian FederationBackground: Fruits and vegetables are healthy because they contain good nutrients and secondary metabolites that keep the body healthy and disease-free. Post-harvest losses of fresh fruits and vegetables limit access and availability as a result of foodborne infections and poor storage technologies. The selection of fruits and vegetables depend on the starting microbial load, the size of fruits and vegetables, and the type of infrastructure. Scope and approach: Despite the positive impacts of conventional thermal (roasting, boiling, blanching) and some non-thermal processing techniques such as High Pressure Processing (HPP), Pulse Electric Field (PEF), Cold Plasma Technology (CPT) on shelf-life extension, their use is commonly associated with a number of negative consequences on product quality such as cold plasma treatment increases the acidity and rate of lipid oxidation and further decrease the colour intensity and firmness of products. Similarly, in high pressure processing and pulse electric field there is no spore inactivation and they further limit their application to semi-moist and liquid foods. On that account, food irradiation, a non-thermal technique, is currently being used for post-harvest preservation, which could be very useful in retaining the keeping quality of various fresh and dehydrated products without negatively affecting their versatility and physico-chemical, nutritional and sensory properties. Conclusion: Existing studies have communicated the effective influence of irradiation technology on nutritional, sensory, and physico-chemical properties of multiple fruits and vegetables accompanying consequential deduction in microbial load throughout the storage period. Food irradiation can be recognized as a prevalent, safe and promising technology however, still is not fully exploited on a magnified scale. The consumer acceptance of processed products has always been a significant challenge for innovative food processing technologies such as food irradiation. Therefore, owing to current review, additional scientific evidences and efforts are still demanded for increasing its technological request.http://www.sciencedirect.com/science/article/pii/S240584402202206XFood irradiationNon-thermalPreservationFoodborne infection |
spellingShingle | Pooja Bhatnagar Prateek Gururani Bhawna Bisht Vinod Kumar Navin Kumar Raja Joshi Mikhail S. Vlaskin Impact of irradiation on physico-chemical and nutritional properties of fruits and vegetables: A mini review Heliyon Food irradiation Non-thermal Preservation Foodborne infection |
title | Impact of irradiation on physico-chemical and nutritional properties of fruits and vegetables: A mini review |
title_full | Impact of irradiation on physico-chemical and nutritional properties of fruits and vegetables: A mini review |
title_fullStr | Impact of irradiation on physico-chemical and nutritional properties of fruits and vegetables: A mini review |
title_full_unstemmed | Impact of irradiation on physico-chemical and nutritional properties of fruits and vegetables: A mini review |
title_short | Impact of irradiation on physico-chemical and nutritional properties of fruits and vegetables: A mini review |
title_sort | impact of irradiation on physico chemical and nutritional properties of fruits and vegetables a mini review |
topic | Food irradiation Non-thermal Preservation Foodborne infection |
url | http://www.sciencedirect.com/science/article/pii/S240584402202206X |
work_keys_str_mv | AT poojabhatnagar impactofirradiationonphysicochemicalandnutritionalpropertiesoffruitsandvegetablesaminireview AT prateekgururani impactofirradiationonphysicochemicalandnutritionalpropertiesoffruitsandvegetablesaminireview AT bhawnabisht impactofirradiationonphysicochemicalandnutritionalpropertiesoffruitsandvegetablesaminireview AT vinodkumar impactofirradiationonphysicochemicalandnutritionalpropertiesoffruitsandvegetablesaminireview AT navinkumar impactofirradiationonphysicochemicalandnutritionalpropertiesoffruitsandvegetablesaminireview AT rajajoshi impactofirradiationonphysicochemicalandnutritionalpropertiesoffruitsandvegetablesaminireview AT mikhailsvlaskin impactofirradiationonphysicochemicalandnutritionalpropertiesoffruitsandvegetablesaminireview |