(<i>F</i>, <i>G</i>, <i>C</i>)-Resolvent Operator Families and Applications

In this paper, we introduce and investigate several new classes of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>F</mi><mo>,</mo><mi>G</mi>&l...

Full description

Bibliographic Details
Main Authors: Vladimir E. Fedorov, Marko Kostić
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/16/3505
_version_ 1797583944806301696
author Vladimir E. Fedorov
Marko Kostić
author_facet Vladimir E. Fedorov
Marko Kostić
author_sort Vladimir E. Fedorov
collection DOAJ
description In this paper, we introduce and investigate several new classes of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>F</mi><mo>,</mo><mi>G</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></semantics></math></inline-formula>-regularized resolvent operator families subgenerated by multivalued linear operators in locally convex spaces. The known classes of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>-regularized <i>C</i>-resolvent operator-type families are special cases of the classes introduced in this paper. We provide certain applications of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>F</mi><mo>,</mo><mi>G</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></semantics></math></inline-formula>-regularized resolvent operator families and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>-regularized <i>C</i>-resolvent families to abstract fractional differential–difference inclusions and abstract Volterra integro-difference inclusions.
first_indexed 2024-03-10T23:45:16Z
format Article
id doaj.art-229f22ad8e784541a3b1e7d4f3fa00f6
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T23:45:16Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-229f22ad8e784541a3b1e7d4f3fa00f62023-11-19T02:02:59ZengMDPI AGMathematics2227-73902023-08-011116350510.3390/math11163505(<i>F</i>, <i>G</i>, <i>C</i>)-Resolvent Operator Families and ApplicationsVladimir E. Fedorov0Marko Kostić1Department of Mathematical Analysis, Mathematics Faculty, Chelyabinsk State University, Kashirin Brothers St. 129, 454001 Chelyabinsk, RussiaFaculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125 Novi Sad, SerbiaIn this paper, we introduce and investigate several new classes of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>F</mi><mo>,</mo><mi>G</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></semantics></math></inline-formula>-regularized resolvent operator families subgenerated by multivalued linear operators in locally convex spaces. The known classes of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>-regularized <i>C</i>-resolvent operator-type families are special cases of the classes introduced in this paper. We provide certain applications of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>F</mi><mo>,</mo><mi>G</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></semantics></math></inline-formula>-regularized resolvent operator families and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>-regularized <i>C</i>-resolvent families to abstract fractional differential–difference inclusions and abstract Volterra integro-difference inclusions.https://www.mdpi.com/2227-7390/11/16/3505(<i>F</i>, <i>G</i>, <i>C</i>)-resolvent operator familiesabstract fractional differential–difference inclusionsabstract Volterra integro-difference inclusionslocally convex spaceswell-posedness
spellingShingle Vladimir E. Fedorov
Marko Kostić
(<i>F</i>, <i>G</i>, <i>C</i>)-Resolvent Operator Families and Applications
Mathematics
(<i>F</i>, <i>G</i>, <i>C</i>)-resolvent operator families
abstract fractional differential–difference inclusions
abstract Volterra integro-difference inclusions
locally convex spaces
well-posedness
title (<i>F</i>, <i>G</i>, <i>C</i>)-Resolvent Operator Families and Applications
title_full (<i>F</i>, <i>G</i>, <i>C</i>)-Resolvent Operator Families and Applications
title_fullStr (<i>F</i>, <i>G</i>, <i>C</i>)-Resolvent Operator Families and Applications
title_full_unstemmed (<i>F</i>, <i>G</i>, <i>C</i>)-Resolvent Operator Families and Applications
title_short (<i>F</i>, <i>G</i>, <i>C</i>)-Resolvent Operator Families and Applications
title_sort i f i i g i i c i resolvent operator families and applications
topic (<i>F</i>, <i>G</i>, <i>C</i>)-resolvent operator families
abstract fractional differential–difference inclusions
abstract Volterra integro-difference inclusions
locally convex spaces
well-posedness
url https://www.mdpi.com/2227-7390/11/16/3505
work_keys_str_mv AT vladimirefedorov ifiigiiciresolventoperatorfamiliesandapplications
AT markokostic ifiigiiciresolventoperatorfamiliesandapplications