Quantum photonic devices in single-crystal diamond
Nitrogen–vacancy centers in diamond have outstanding quantum optical properties that enable applications in information processing and sensing. As with most solid-state systems for quantum photonic applications, the great promise lies in the capability to embed them in an on-chip optical network. He...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2013-01-01
|
Series: | New Journal of Physics |
Online Access: | https://doi.org/10.1088/1367-2630/15/2/025010 |
Summary: | Nitrogen–vacancy centers in diamond have outstanding quantum optical properties that enable applications in information processing and sensing. As with most solid-state systems for quantum photonic applications, the great promise lies in the capability to embed them in an on-chip optical network. Here we present basic integrated devices composed of diamond micro-ring resonators coupled to waveguides that are terminated with grating out-couplers. Strong enhancement is observed for the zero-phonon line of nitrogen–vacancy centers coupled to the ring resonance. The zero-phonon line is efficiently coupled from the ring into the waveguide and then scattered out of plane by the grating out-couplers. |
---|---|
ISSN: | 1367-2630 |