Effects of pH and salinity on survival, growth, and enzyme activities in juveniles of the sunray surf clam (Mactra chinensis Philippi)

The study investigated the impact of salinity and pH changes on the survival, growth, and antioxidant enzyme activity in Mactra chinensis Philippi (1.00 ± 0.10 cm shell length, 0.75 ± 0.04 cm shell height), a marine clam species. Juveniles were exposed to various pH levels (5.4 - 9.6) and salinities...

Full description

Bibliographic Details
Main Authors: Yuanyuan Dai, Yubo Dong, Feng Yang, Zhongzhi Chen, Jia Jia, Huimin Wu, Zilong Chen
Format: Article
Language:English
Published: Elsevier 2023-12-01
Series:Fish and Shellfish Immunology Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2667011923000348
Description
Summary:The study investigated the impact of salinity and pH changes on the survival, growth, and antioxidant enzyme activity in Mactra chinensis Philippi (1.00 ± 0.10 cm shell length, 0.75 ± 0.04 cm shell height), a marine clam species. Juveniles were exposed to various pH levels (5.4 - 9.6) and salinities (5 - 35 psu) for up to 20 days at 19 ± 0.5 ˚C. The individual effect of salinity and pH on juveniles were evaluated under pH 8.0 and salinity 30 psu, respectively. The results indicated that the highest survival rates were observed at pH 8.0 (85%, salinity = 30 psu) and salinity 30 psu (95%, pH = 8.0). The survival rates were significantly reduced at extreme pH (≤ 7.2; ≥ 8.4) and salinities (≤ 15; 35 psu). Additionally, oxidative stress was observed in clams exposed to low pH and salinity as indicated by the decreased activities of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). Notably, no significant difference in relative growth rates was observed between salinity 25 and 30 psu, between pH 7.8/8.4 and pH 8.0. Our results provide information on potential impact of pH and salinity changes on economically important bivalve species and may be used to optimize pH and salinity in aquaculture.
ISSN:2667-0119