A Modified Fletcher–Reeves Conjugate Gradient Method for Monotone Nonlinear Equations with Some Applications
One of the fastest growing and efficient methods for solving the unconstrained minimization problem is the conjugate gradient method (CG). Recently, considerable efforts have been made to extend the CG method for solving monotone nonlinear equations. In this research article, we present a modificati...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-08-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/7/8/745 |
Summary: | One of the fastest growing and efficient methods for solving the unconstrained minimization problem is the conjugate gradient method (CG). Recently, considerable efforts have been made to extend the CG method for solving monotone nonlinear equations. In this research article, we present a modification of the Fletcher−Reeves (FR) conjugate gradient projection method for constrained monotone nonlinear equations. The method possesses sufficient descent property and its global convergence was proved using some appropriate assumptions. Two sets of numerical experiments were carried out to show the good performance of the proposed method compared with some existing ones. The first experiment was for solving monotone constrained nonlinear equations using some benchmark test problem while the second experiment was applying the method in signal and image recovery problems arising from compressive sensing. |
---|---|
ISSN: | 2227-7390 |