A Modified Fletcher–Reeves Conjugate Gradient Method for Monotone Nonlinear Equations with Some Applications

One of the fastest growing and efficient methods for solving the unconstrained minimization problem is the conjugate gradient method (CG). Recently, considerable efforts have been made to extend the CG method for solving monotone nonlinear equations. In this research article, we present a modificati...

Full description

Bibliographic Details
Main Authors: Auwal Bala Abubakar, Poom Kumam, Hassan Mohammad, Aliyu Muhammed Awwal, Kanokwan Sitthithakerngkiet
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/8/745
Description
Summary:One of the fastest growing and efficient methods for solving the unconstrained minimization problem is the conjugate gradient method (CG). Recently, considerable efforts have been made to extend the CG method for solving monotone nonlinear equations. In this research article, we present a modification of the Fletcher−Reeves (FR) conjugate gradient projection method for constrained monotone nonlinear equations. The method possesses sufficient descent property and its global convergence was proved using some appropriate assumptions. Two sets of numerical experiments were carried out to show the good performance of the proposed method compared with some existing ones. The first experiment was for solving monotone constrained nonlinear equations using some benchmark test problem while the second experiment was applying the method in signal and image recovery problems arising from compressive sensing.
ISSN:2227-7390