Nucleation of Helium in Liquid Lithium at 843 K and High Pressures

Fusion energy stands out as a promising alternative for a future decarbonised energy system. In order to be sustainable, future fusion nuclear reactors will have to produce their own tritium. In the so-called breeding blanket of a reactor, the neutron bombardment of lithium will produce the desired...

Full description

Bibliographic Details
Main Authors: Jordi Martí, Ferran Mazzanti, Grigori E. Astrakharchik, Lluís Batet, Laura Portos-Amill, Borja Pedreño
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/8/2866
_version_ 1797410206408245248
author Jordi Martí
Ferran Mazzanti
Grigori E. Astrakharchik
Lluís Batet
Laura Portos-Amill
Borja Pedreño
author_facet Jordi Martí
Ferran Mazzanti
Grigori E. Astrakharchik
Lluís Batet
Laura Portos-Amill
Borja Pedreño
author_sort Jordi Martí
collection DOAJ
description Fusion energy stands out as a promising alternative for a future decarbonised energy system. In order to be sustainable, future fusion nuclear reactors will have to produce their own tritium. In the so-called breeding blanket of a reactor, the neutron bombardment of lithium will produce the desired tritium, but also helium, which can trigger nucleation mechanisms owing to the very low solubility of helium in liquid metals. An understanding of the underlying microscopic processes is important for improving the efficiency, sustainability and reliability of the fusion energy conversion process. The spontaneous creation of helium droplets or bubbles in the liquid metal used as breeding material in some designs may be a serious issue for the performance of the breeding blankets. This phenomenon has yet to be fully studied and understood. This work aims to provide some insight on the behaviour of lithium and helium mixtures at experimentally corresponding operating conditions (843 K and pressures between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>8</mn></msup></semantics></math></inline-formula> and 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>10</mn></msup></semantics></math></inline-formula> Pa). We report a microscopic study of the thermodynamic, structural and dynamical properties of lithium–helium mixtures, as a first step to the simulation of the environment in a nuclear fusion power plant. We introduce a new microscopic model devised to describe the formation of helium droplets in the thermodynamic range considered. Our model predicts the formation of helium droplets at pressures around 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>9</mn></msup></semantics></math></inline-formula> Pa, with radii between 1 and 2 Å. The diffusion coefficient of lithium (2 Å<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>/ps) is in excellent agreement with reference experimental data, whereas the diffusion coefficient of helium is in the range of 1 Å<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>/ps and tends to decrease as pressure increases.
first_indexed 2024-03-09T04:26:31Z
format Article
id doaj.art-22cf4cd66bc24d40a8e5c978366e0e66
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-09T04:26:31Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-22cf4cd66bc24d40a8e5c978366e0e662023-12-03T13:39:23ZengMDPI AGMaterials1996-19442022-04-01158286610.3390/ma15082866Nucleation of Helium in Liquid Lithium at 843 K and High PressuresJordi Martí0Ferran Mazzanti1Grigori E. Astrakharchik2Lluís Batet3Laura Portos-Amill4Borja Pedreño5Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, 08034 Barcelona, SpainDepartment of Physics, Polytechnic University of Catalonia-Barcelona Tech, 08034 Barcelona, SpainDepartment of Physics, Polytechnic University of Catalonia-Barcelona Tech, 08034 Barcelona, SpainDepartment of Physics, Polytechnic University of Catalonia-Barcelona Tech, 08034 Barcelona, SpainBarcelona School of Telecommunications Engineering, Polytechnic University of Catalonia-Barcelona Tech, 08034 Barcelona, SpainBarcelona School of Telecommunications Engineering, Polytechnic University of Catalonia-Barcelona Tech, 08034 Barcelona, SpainFusion energy stands out as a promising alternative for a future decarbonised energy system. In order to be sustainable, future fusion nuclear reactors will have to produce their own tritium. In the so-called breeding blanket of a reactor, the neutron bombardment of lithium will produce the desired tritium, but also helium, which can trigger nucleation mechanisms owing to the very low solubility of helium in liquid metals. An understanding of the underlying microscopic processes is important for improving the efficiency, sustainability and reliability of the fusion energy conversion process. The spontaneous creation of helium droplets or bubbles in the liquid metal used as breeding material in some designs may be a serious issue for the performance of the breeding blankets. This phenomenon has yet to be fully studied and understood. This work aims to provide some insight on the behaviour of lithium and helium mixtures at experimentally corresponding operating conditions (843 K and pressures between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>8</mn></msup></semantics></math></inline-formula> and 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>10</mn></msup></semantics></math></inline-formula> Pa). We report a microscopic study of the thermodynamic, structural and dynamical properties of lithium–helium mixtures, as a first step to the simulation of the environment in a nuclear fusion power plant. We introduce a new microscopic model devised to describe the formation of helium droplets in the thermodynamic range considered. Our model predicts the formation of helium droplets at pressures around 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>9</mn></msup></semantics></math></inline-formula> Pa, with radii between 1 and 2 Å. The diffusion coefficient of lithium (2 Å<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>/ps) is in excellent agreement with reference experimental data, whereas the diffusion coefficient of helium is in the range of 1 Å<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>/ps and tends to decrease as pressure increases.https://www.mdpi.com/1996-1944/15/8/2866nucleationbreeding blanketsfusion reactorshelium–lithium mixtures
spellingShingle Jordi Martí
Ferran Mazzanti
Grigori E. Astrakharchik
Lluís Batet
Laura Portos-Amill
Borja Pedreño
Nucleation of Helium in Liquid Lithium at 843 K and High Pressures
Materials
nucleation
breeding blankets
fusion reactors
helium–lithium mixtures
title Nucleation of Helium in Liquid Lithium at 843 K and High Pressures
title_full Nucleation of Helium in Liquid Lithium at 843 K and High Pressures
title_fullStr Nucleation of Helium in Liquid Lithium at 843 K and High Pressures
title_full_unstemmed Nucleation of Helium in Liquid Lithium at 843 K and High Pressures
title_short Nucleation of Helium in Liquid Lithium at 843 K and High Pressures
title_sort nucleation of helium in liquid lithium at 843 k and high pressures
topic nucleation
breeding blankets
fusion reactors
helium–lithium mixtures
url https://www.mdpi.com/1996-1944/15/8/2866
work_keys_str_mv AT jordimarti nucleationofheliuminliquidlithiumat843kandhighpressures
AT ferranmazzanti nucleationofheliuminliquidlithiumat843kandhighpressures
AT grigorieastrakharchik nucleationofheliuminliquidlithiumat843kandhighpressures
AT lluisbatet nucleationofheliuminliquidlithiumat843kandhighpressures
AT lauraportosamill nucleationofheliuminliquidlithiumat843kandhighpressures
AT borjapedreno nucleationofheliuminliquidlithiumat843kandhighpressures