Nanoencapsulation Enhances Anticoagulant Activity of Adenosine and Dipeptide IleTrp

It is well-known that drugs administered into an organism intravenously or through the gastrointestinal tract are degraded by enzymes of the body, reducing their therapeutic effect. One of the ways to decrease this undesirable process is through the inclusion of drugs in nanomaterials. Earlier stron...

Full description

Bibliographic Details
Main Authors: Trung Dinh Nguyen, The Ngoc Nguyen, Trang Thuy Thi Nguyen, Igor A. Ivanov, Khoa Cuu Nguyen, Quyen Ngoc Tran, Anh Ngoc Hoang, Yuri N. Utkin
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/9/9/1191
Description
Summary:It is well-known that drugs administered into an organism intravenously or through the gastrointestinal tract are degraded by enzymes of the body, reducing their therapeutic effect. One of the ways to decrease this undesirable process is through the inclusion of drugs in nanomaterials. Earlier strong anticoagulant activity was demonstrated for dipeptide IleTrp (IW) and adenosine (Ado). In this work, the effect of inclusion in nanomaterials on the biological activity of IW and Ado was studied. For this purpose, Ado and IW were incorporated into thermosensitive nanogel composed of pluronic P123-grafted heparin. The prepared nanocarrier was characterized by transmission electron microscopy, dynamic light scattering, and ζ-potential. Biological activity was determined by measuring the bleeding time from mouse tail in vivo and the time of clot formation in vitro. It was found that encapsulation of Ado and IW into nanomaterial significantly increased their effects, resulting in an increase in the bleeding time from mouse tail and clot formation time. Thus, inclusion of low molecular weight anticoagulants Ado and IW into nanomaterials may be considered a way to increase their biological activity.
ISSN:2079-4991