B-Gabor type frames in separable Hilbert spaces

It is guaranteed that Gabor like structured frames do exist in any finite dimensional Hilbert space via an invertible map from l2(ZN) J Thomas and Nambudiri [2022]. Hence the question: whether it is possible to obtain structured class of frames in separable Hilbert spaces? is relevant. In this artic...

Full description

Bibliographic Details
Main Authors: Thomas Jineesh, N M Madhavan Namboothiri, P N Jayaprasad
Format: Article
Language:English
Published: Accademia Piceno Aprutina dei Velati 2023-12-01
Series:Ratio Mathematica
Subjects:
Online Access:http://eiris.it/ojs/index.php/ratiomathematica/article/view/1236
_version_ 1827394863475195904
author Thomas Jineesh
N M Madhavan Namboothiri
P N Jayaprasad
author_facet Thomas Jineesh
N M Madhavan Namboothiri
P N Jayaprasad
author_sort Thomas Jineesh
collection DOAJ
description It is guaranteed that Gabor like structured frames do exist in any finite dimensional Hilbert space via an invertible map from l2(ZN) J Thomas and Nambudiri [2022]. Hence the question: whether it is possible to obtain structured class of frames in separable Hilbert spaces? is relevant. In this article we obtain a structured class of frames for separable Hilbert spaces which are generalizations of Gabor frames for L2(R) in their construction aspects. We call them as B-Gabor type frames and present a characterization of the frame operators associated with these frames when B is a unitary map. Some significant properties of the associated frame operators are discussed.
first_indexed 2024-03-08T18:21:24Z
format Article
id doaj.art-22e28d9d142c45fa89e7f7dd00e3a09e
institution Directory Open Access Journal
issn 1592-7415
2282-8214
language English
last_indexed 2024-03-08T18:21:24Z
publishDate 2023-12-01
publisher Accademia Piceno Aprutina dei Velati
record_format Article
series Ratio Mathematica
spelling doaj.art-22e28d9d142c45fa89e7f7dd00e3a09e2023-12-30T21:04:20ZengAccademia Piceno Aprutina dei VelatiRatio Mathematica1592-74152282-82142023-12-0148010.23755/rm.v48i0.1236871B-Gabor type frames in separable Hilbert spacesThomas Jineesh0N M Madhavan Namboothiri1P N Jayaprasad2Mahatma Gandhi University Kerala IndiaMahatma Gandhi University Kerala IndiaMahatma Gandhi University Kerala IndiaIt is guaranteed that Gabor like structured frames do exist in any finite dimensional Hilbert space via an invertible map from l2(ZN) J Thomas and Nambudiri [2022]. Hence the question: whether it is possible to obtain structured class of frames in separable Hilbert spaces? is relevant. In this article we obtain a structured class of frames for separable Hilbert spaces which are generalizations of Gabor frames for L2(R) in their construction aspects. We call them as B-Gabor type frames and present a characterization of the frame operators associated with these frames when B is a unitary map. Some significant properties of the associated frame operators are discussed.http://eiris.it/ojs/index.php/ratiomathematica/article/view/1236gabor frameframe operatortranslationmodulation
spellingShingle Thomas Jineesh
N M Madhavan Namboothiri
P N Jayaprasad
B-Gabor type frames in separable Hilbert spaces
Ratio Mathematica
gabor frame
frame operator
translation
modulation
title B-Gabor type frames in separable Hilbert spaces
title_full B-Gabor type frames in separable Hilbert spaces
title_fullStr B-Gabor type frames in separable Hilbert spaces
title_full_unstemmed B-Gabor type frames in separable Hilbert spaces
title_short B-Gabor type frames in separable Hilbert spaces
title_sort b gabor type frames in separable hilbert spaces
topic gabor frame
frame operator
translation
modulation
url http://eiris.it/ojs/index.php/ratiomathematica/article/view/1236
work_keys_str_mv AT thomasjineesh bgabortypeframesinseparablehilbertspaces
AT nmmadhavannamboothiri bgabortypeframesinseparablehilbertspaces
AT pnjayaprasad bgabortypeframesinseparablehilbertspaces