Existence of Solution for Non-Linear Functional Integral Equations of Two Variables in Banach Algebra

The aim of this article is to establish the existence of the solution of non-linear functional integral equations <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>...

Full description

Bibliographic Details
Main Authors: Hari M. Srivastava, Anupam Das, Bipan Hazarika, S. A. Mohiuddine
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/5/674
_version_ 1798026016649641984
author Hari M. Srivastava
Anupam Das
Bipan Hazarika
S. A. Mohiuddine
author_facet Hari M. Srivastava
Anupam Das
Bipan Hazarika
S. A. Mohiuddine
author_sort Hari M. Srivastava
collection DOAJ
description The aim of this article is to establish the existence of the solution of non-linear functional integral equations <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced separators="" open="(" close=")"> <mi>U</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>,</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>F</mi> <mfenced separators="" open="(" close=")"> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>,</mo> <msubsup> <mo>&#8747;</mo> <mrow> <mn>0</mn> </mrow> <mi>l</mi> </msubsup> <msubsup> <mo>&#8747;</mo> <mrow> <mn>0</mn> </mrow> <mi>h</mi> </msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>u</mi> <mo>,</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>r</mi> <mi>d</mi> <mi>u</mi> <mo>,</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> </mfenced> </mfenced> <mo>&#215;</mo> <mi>G</mi> <mfenced separators="" open="(" close=")"> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>,</mo> <msubsup> <mo>&#8747;</mo> <mrow> <mn>0</mn> </mrow> <mi>a</mi> </msubsup> <msubsup> <mo>&#8747;</mo> <mrow> <mn>0</mn> </mrow> <mi>a</mi> </msubsup> <mi>Q</mi> <mfenced separators="" open="(" close=")"> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>u</mi> <mo>,</mo> <mi>x</mi> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mfenced> <mi>d</mi> <mi>r</mi> <mi>d</mi> <mi>u</mi> <mo>,</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> </mfenced> </mrow> </semantics> </math> </inline-formula> of two variables, which is of the form of two operators in the setting of Banach algebra <inline-formula> <math display="inline"> <semantics> <mrow> <mi>C</mi> <mfenced separators="" open="(" close=")"> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mi>a</mi> <mo>]</mo> <mo>&#215;</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mi>a</mi> <mo>]</mo> </mfenced> <mo>,</mo> <mi>a</mi> <mo>&gt;</mo> <mn>0</mn> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> Our methodology relies upon the measure of noncompactness related to the fixed point hypothesis. We have used the measure of noncompactness on <inline-formula> <math display="inline"> <semantics> <mrow> <mi>C</mi> <mfenced separators="" open="(" close=")"> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mi>a</mi> <mo>]</mo> <mo>&#215;</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mi>a</mi> <mo>]</mo> </mfenced> </mrow> </semantics> </math> </inline-formula> and a fixed point theorem, which is a generalization of Darbo&#8217;s fixed point theorem for the product of operators. We additionally illustrate our outcome with the help of an interesting example.
first_indexed 2024-04-11T18:28:23Z
format Article
id doaj.art-22e6f6f6bedb45e5935d6c4909035ee9
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-04-11T18:28:23Z
publishDate 2019-05-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-22e6f6f6bedb45e5935d6c4909035ee92022-12-22T04:09:32ZengMDPI AGSymmetry2073-89942019-05-0111567410.3390/sym11050674sym11050674Existence of Solution for Non-Linear Functional Integral Equations of Two Variables in Banach AlgebraHari M. Srivastava0Anupam Das1Bipan Hazarika2S. A. Mohiuddine3Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, CanadaDepartment of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh 791112, Arunachal Pradesh, IndiaDepartment of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh 791112, Arunachal Pradesh, IndiaOperator Theory and Applications Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaThe aim of this article is to establish the existence of the solution of non-linear functional integral equations <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced separators="" open="(" close=")"> <mi>U</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>,</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>F</mi> <mfenced separators="" open="(" close=")"> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>,</mo> <msubsup> <mo>&#8747;</mo> <mrow> <mn>0</mn> </mrow> <mi>l</mi> </msubsup> <msubsup> <mo>&#8747;</mo> <mrow> <mn>0</mn> </mrow> <mi>h</mi> </msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>u</mi> <mo>,</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>r</mi> <mi>d</mi> <mi>u</mi> <mo>,</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> </mfenced> </mfenced> <mo>&#215;</mo> <mi>G</mi> <mfenced separators="" open="(" close=")"> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>,</mo> <msubsup> <mo>&#8747;</mo> <mrow> <mn>0</mn> </mrow> <mi>a</mi> </msubsup> <msubsup> <mo>&#8747;</mo> <mrow> <mn>0</mn> </mrow> <mi>a</mi> </msubsup> <mi>Q</mi> <mfenced separators="" open="(" close=")"> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>u</mi> <mo>,</mo> <mi>x</mi> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mfenced> <mi>d</mi> <mi>r</mi> <mi>d</mi> <mi>u</mi> <mo>,</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> </mfenced> </mrow> </semantics> </math> </inline-formula> of two variables, which is of the form of two operators in the setting of Banach algebra <inline-formula> <math display="inline"> <semantics> <mrow> <mi>C</mi> <mfenced separators="" open="(" close=")"> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mi>a</mi> <mo>]</mo> <mo>&#215;</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mi>a</mi> <mo>]</mo> </mfenced> <mo>,</mo> <mi>a</mi> <mo>&gt;</mo> <mn>0</mn> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> Our methodology relies upon the measure of noncompactness related to the fixed point hypothesis. We have used the measure of noncompactness on <inline-formula> <math display="inline"> <semantics> <mrow> <mi>C</mi> <mfenced separators="" open="(" close=")"> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mi>a</mi> <mo>]</mo> <mo>&#215;</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mi>a</mi> <mo>]</mo> </mfenced> </mrow> </semantics> </math> </inline-formula> and a fixed point theorem, which is a generalization of Darbo&#8217;s fixed point theorem for the product of operators. We additionally illustrate our outcome with the help of an interesting example.https://www.mdpi.com/2073-8994/11/5/674functional integral equationsBanach algebrafixed point theoremmeasure of noncompactness
spellingShingle Hari M. Srivastava
Anupam Das
Bipan Hazarika
S. A. Mohiuddine
Existence of Solution for Non-Linear Functional Integral Equations of Two Variables in Banach Algebra
Symmetry
functional integral equations
Banach algebra
fixed point theorem
measure of noncompactness
title Existence of Solution for Non-Linear Functional Integral Equations of Two Variables in Banach Algebra
title_full Existence of Solution for Non-Linear Functional Integral Equations of Two Variables in Banach Algebra
title_fullStr Existence of Solution for Non-Linear Functional Integral Equations of Two Variables in Banach Algebra
title_full_unstemmed Existence of Solution for Non-Linear Functional Integral Equations of Two Variables in Banach Algebra
title_short Existence of Solution for Non-Linear Functional Integral Equations of Two Variables in Banach Algebra
title_sort existence of solution for non linear functional integral equations of two variables in banach algebra
topic functional integral equations
Banach algebra
fixed point theorem
measure of noncompactness
url https://www.mdpi.com/2073-8994/11/5/674
work_keys_str_mv AT harimsrivastava existenceofsolutionfornonlinearfunctionalintegralequationsoftwovariablesinbanachalgebra
AT anupamdas existenceofsolutionfornonlinearfunctionalintegralequationsoftwovariablesinbanachalgebra
AT bipanhazarika existenceofsolutionfornonlinearfunctionalintegralequationsoftwovariablesinbanachalgebra
AT samohiuddine existenceofsolutionfornonlinearfunctionalintegralequationsoftwovariablesinbanachalgebra