Ion modes in dense ionized plasmas through nonadiabatic molecular dynamics

We perform nonadiabatic simulations of warm dense aluminum based on the electron-force field (EFF) variant of wave-packet molecular dynamics. Comparison of the static ion-ion structure factor with density functional theory (DFT) is used to validate the technique across a range of temperatures and de...

Full description

Bibliographic Details
Main Authors: R. A. Davis, W. A. Angermeier, R. K. T. Hermsmeier, T. G. White
Format: Article
Language:English
Published: American Physical Society 2020-10-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.2.043139
_version_ 1797211187303153664
author R. A. Davis
W. A. Angermeier
R. K. T. Hermsmeier
T. G. White
author_facet R. A. Davis
W. A. Angermeier
R. K. T. Hermsmeier
T. G. White
author_sort R. A. Davis
collection DOAJ
description We perform nonadiabatic simulations of warm dense aluminum based on the electron-force field (EFF) variant of wave-packet molecular dynamics. Comparison of the static ion-ion structure factor with density functional theory (DFT) is used to validate the technique across a range of temperatures and densities spanning the warm dense matter regime. Focusing on a specific temperature and density (3.5 eV, 5.2 g/cm^{3}), we report on differences in the dynamic structure factor and dispersion relation across a variety of adiabatic and nonadiabatic techniques. We find the dispersion relation produced with EFF is in close agreement with the more robust and adiabatic Kohn-Sham DFT.
first_indexed 2024-04-24T10:22:30Z
format Article
id doaj.art-22efd8c9173840d998a6f4e57fcb293e
institution Directory Open Access Journal
issn 2643-1564
language English
last_indexed 2024-04-24T10:22:30Z
publishDate 2020-10-01
publisher American Physical Society
record_format Article
series Physical Review Research
spelling doaj.art-22efd8c9173840d998a6f4e57fcb293e2024-04-12T17:03:04ZengAmerican Physical SocietyPhysical Review Research2643-15642020-10-012404313910.1103/PhysRevResearch.2.043139Ion modes in dense ionized plasmas through nonadiabatic molecular dynamicsR. A. DavisW. A. AngermeierR. K. T. HermsmeierT. G. WhiteWe perform nonadiabatic simulations of warm dense aluminum based on the electron-force field (EFF) variant of wave-packet molecular dynamics. Comparison of the static ion-ion structure factor with density functional theory (DFT) is used to validate the technique across a range of temperatures and densities spanning the warm dense matter regime. Focusing on a specific temperature and density (3.5 eV, 5.2 g/cm^{3}), we report on differences in the dynamic structure factor and dispersion relation across a variety of adiabatic and nonadiabatic techniques. We find the dispersion relation produced with EFF is in close agreement with the more robust and adiabatic Kohn-Sham DFT.http://doi.org/10.1103/PhysRevResearch.2.043139
spellingShingle R. A. Davis
W. A. Angermeier
R. K. T. Hermsmeier
T. G. White
Ion modes in dense ionized plasmas through nonadiabatic molecular dynamics
Physical Review Research
title Ion modes in dense ionized plasmas through nonadiabatic molecular dynamics
title_full Ion modes in dense ionized plasmas through nonadiabatic molecular dynamics
title_fullStr Ion modes in dense ionized plasmas through nonadiabatic molecular dynamics
title_full_unstemmed Ion modes in dense ionized plasmas through nonadiabatic molecular dynamics
title_short Ion modes in dense ionized plasmas through nonadiabatic molecular dynamics
title_sort ion modes in dense ionized plasmas through nonadiabatic molecular dynamics
url http://doi.org/10.1103/PhysRevResearch.2.043139
work_keys_str_mv AT radavis ionmodesindenseionizedplasmasthroughnonadiabaticmoleculardynamics
AT waangermeier ionmodesindenseionizedplasmasthroughnonadiabaticmoleculardynamics
AT rkthermsmeier ionmodesindenseionizedplasmasthroughnonadiabaticmoleculardynamics
AT tgwhite ionmodesindenseionizedplasmasthroughnonadiabaticmoleculardynamics