The Optimal Locomotion of a Self-Propelled Worm Actuated by Two Square Waves
Worm-like locomotion at small scales induced by propagating a series of extensive or contraction waves has exhibited enormous possibilities in reproducing artificial mobile soft robotics. However, the optimal relation between locomotion performance and some important parameters, such as the distance...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-12-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-666X/8/12/364 |
_version_ | 1828826814315757568 |
---|---|
author | Ziwang Jiang Jian Xu |
author_facet | Ziwang Jiang Jian Xu |
author_sort | Ziwang Jiang |
collection | DOAJ |
description | Worm-like locomotion at small scales induced by propagating a series of extensive or contraction waves has exhibited enormous possibilities in reproducing artificial mobile soft robotics. However, the optimal relation between locomotion performance and some important parameters, such as the distance between two adjacent waves, wave width, and body length, is still not clear. To solve this problem, this paper studies the optimal problem of a worm’s motion induced by two peristalsis waves in a viscous medium. Inspired by a worm’s motion, we consider that its body consists of two segments which can perform the respective shape change. Next, a quasi-static model describing the worm-like locomotion is used to investigate the relationship between its average velocity over the period and these parameters. Through the analysis of the relationship among these parameters, we find that there exist four different cases which should be addressed. Correspondingly, the average velocity in each case can be approximately derived. After that, optimization is carried out on each case to maximize the average velocity according to the Kuhn–Tucker Conditions. As a result, the optimal conditions of all of the cases are obtained. Finally, numerical and experimental verifications are carried out to demonstrate the correctness of the obtained results. |
first_indexed | 2024-12-12T14:47:01Z |
format | Article |
id | doaj.art-22ffc1d9fc1e4b8b91079e5b0869ff8c |
institution | Directory Open Access Journal |
issn | 2072-666X |
language | English |
last_indexed | 2024-12-12T14:47:01Z |
publishDate | 2017-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Micromachines |
spelling | doaj.art-22ffc1d9fc1e4b8b91079e5b0869ff8c2022-12-22T00:21:05ZengMDPI AGMicromachines2072-666X2017-12-0181236410.3390/mi8120364mi8120364The Optimal Locomotion of a Self-Propelled Worm Actuated by Two Square WavesZiwang Jiang0Jian Xu1School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, ChinaSchool of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, ChinaWorm-like locomotion at small scales induced by propagating a series of extensive or contraction waves has exhibited enormous possibilities in reproducing artificial mobile soft robotics. However, the optimal relation between locomotion performance and some important parameters, such as the distance between two adjacent waves, wave width, and body length, is still not clear. To solve this problem, this paper studies the optimal problem of a worm’s motion induced by two peristalsis waves in a viscous medium. Inspired by a worm’s motion, we consider that its body consists of two segments which can perform the respective shape change. Next, a quasi-static model describing the worm-like locomotion is used to investigate the relationship between its average velocity over the period and these parameters. Through the analysis of the relationship among these parameters, we find that there exist four different cases which should be addressed. Correspondingly, the average velocity in each case can be approximately derived. After that, optimization is carried out on each case to maximize the average velocity according to the Kuhn–Tucker Conditions. As a result, the optimal conditions of all of the cases are obtained. Finally, numerical and experimental verifications are carried out to demonstrate the correctness of the obtained results.https://www.mdpi.com/2072-666X/8/12/364worm-like locomotiontwo square wavestwo-segment wormself-propulsionoptimization |
spellingShingle | Ziwang Jiang Jian Xu The Optimal Locomotion of a Self-Propelled Worm Actuated by Two Square Waves Micromachines worm-like locomotion two square waves two-segment worm self-propulsion optimization |
title | The Optimal Locomotion of a Self-Propelled Worm Actuated by Two Square Waves |
title_full | The Optimal Locomotion of a Self-Propelled Worm Actuated by Two Square Waves |
title_fullStr | The Optimal Locomotion of a Self-Propelled Worm Actuated by Two Square Waves |
title_full_unstemmed | The Optimal Locomotion of a Self-Propelled Worm Actuated by Two Square Waves |
title_short | The Optimal Locomotion of a Self-Propelled Worm Actuated by Two Square Waves |
title_sort | optimal locomotion of a self propelled worm actuated by two square waves |
topic | worm-like locomotion two square waves two-segment worm self-propulsion optimization |
url | https://www.mdpi.com/2072-666X/8/12/364 |
work_keys_str_mv | AT ziwangjiang theoptimallocomotionofaselfpropelledwormactuatedbytwosquarewaves AT jianxu theoptimallocomotionofaselfpropelledwormactuatedbytwosquarewaves AT ziwangjiang optimallocomotionofaselfpropelledwormactuatedbytwosquarewaves AT jianxu optimallocomotionofaselfpropelledwormactuatedbytwosquarewaves |