6D Pose Estimation for Subsea Intervention in Turbid Waters

Manipulation tasks on subsea instalments require extremely precise detection and localization of objects of interest. This problem is referred to as “pose estimation”. In this work, we present a framework for detecting and predicting 6DoF pose for relevant objects (fish-tail, gauges, and valves) on...

Full description

Bibliographic Details
Main Authors: Ahmed Mohammed, Johannes Kvam, Jens T. Thielemann, Karl H. Haugholt, Petter Risholm
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/19/2369
_version_ 1797516629663285248
author Ahmed Mohammed
Johannes Kvam
Jens T. Thielemann
Karl H. Haugholt
Petter Risholm
author_facet Ahmed Mohammed
Johannes Kvam
Jens T. Thielemann
Karl H. Haugholt
Petter Risholm
author_sort Ahmed Mohammed
collection DOAJ
description Manipulation tasks on subsea instalments require extremely precise detection and localization of objects of interest. This problem is referred to as “pose estimation”. In this work, we present a framework for detecting and predicting 6DoF pose for relevant objects (fish-tail, gauges, and valves) on a subsea panel under varying water turbidity. A deep learning model that takes 3D vision data as an input is developed, providing a more robust 6D pose estimate. Compared to the 2D vision deep learning model, the proposed method reduces rotation and translation prediction error by (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mo>Δ</mo><msup><mn>0.39</mn><mo>∘</mo></msup></mrow></semantics></math></inline-formula>) and translation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mo>Δ</mo><mn>6.5</mn></mrow></semantics></math></inline-formula> mm), respectively, in high turbid waters. The proposed approach is able to provide object detection as well as 6D pose estimation with an average precision of 91%. The 6D pose estimation results show <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>2.59</mn><mo>∘</mo></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.49</mn></mrow></semantics></math></inline-formula> cm total average deviation in rotation and translation as compared to the ground truth data on varying unseen turbidity levels. Furthermore, our approach runs at over 16 frames per second and does not require pose refinement steps. Finally, to facilitate the training of such model we also collected and automatically annotated a new underwater 6D pose estimation dataset spanning seven levels of turbidity.
first_indexed 2024-03-10T07:03:32Z
format Article
id doaj.art-230cb0692cb742bb9a60f5685b217678
institution Directory Open Access Journal
issn 2079-9292
language English
last_indexed 2024-03-10T07:03:32Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Electronics
spelling doaj.art-230cb0692cb742bb9a60f5685b2176782023-11-22T15:56:43ZengMDPI AGElectronics2079-92922021-09-011019236910.3390/electronics101923696D Pose Estimation for Subsea Intervention in Turbid WatersAhmed Mohammed0Johannes Kvam1Jens T. Thielemann2Karl H. Haugholt3Petter Risholm4SINTEF Digital, Smart Sensor Systems, 0373 Oslo, NorwaySINTEF Digital, Smart Sensor Systems, 0373 Oslo, NorwaySINTEF Digital, Smart Sensor Systems, 0373 Oslo, NorwaySINTEF Digital, Smart Sensor Systems, 0373 Oslo, NorwaySINTEF Digital, Smart Sensor Systems, 0373 Oslo, NorwayManipulation tasks on subsea instalments require extremely precise detection and localization of objects of interest. This problem is referred to as “pose estimation”. In this work, we present a framework for detecting and predicting 6DoF pose for relevant objects (fish-tail, gauges, and valves) on a subsea panel under varying water turbidity. A deep learning model that takes 3D vision data as an input is developed, providing a more robust 6D pose estimate. Compared to the 2D vision deep learning model, the proposed method reduces rotation and translation prediction error by (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mo>Δ</mo><msup><mn>0.39</mn><mo>∘</mo></msup></mrow></semantics></math></inline-formula>) and translation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mo>Δ</mo><mn>6.5</mn></mrow></semantics></math></inline-formula> mm), respectively, in high turbid waters. The proposed approach is able to provide object detection as well as 6D pose estimation with an average precision of 91%. The 6D pose estimation results show <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>2.59</mn><mo>∘</mo></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.49</mn></mrow></semantics></math></inline-formula> cm total average deviation in rotation and translation as compared to the ground truth data on varying unseen turbidity levels. Furthermore, our approach runs at over 16 frames per second and does not require pose refinement steps. Finally, to facilitate the training of such model we also collected and automatically annotated a new underwater 6D pose estimation dataset spanning seven levels of turbidity.https://www.mdpi.com/2079-9292/10/19/2369subseapose estimationobject detection3D visionAUVROV
spellingShingle Ahmed Mohammed
Johannes Kvam
Jens T. Thielemann
Karl H. Haugholt
Petter Risholm
6D Pose Estimation for Subsea Intervention in Turbid Waters
Electronics
subsea
pose estimation
object detection
3D vision
AUV
ROV
title 6D Pose Estimation for Subsea Intervention in Turbid Waters
title_full 6D Pose Estimation for Subsea Intervention in Turbid Waters
title_fullStr 6D Pose Estimation for Subsea Intervention in Turbid Waters
title_full_unstemmed 6D Pose Estimation for Subsea Intervention in Turbid Waters
title_short 6D Pose Estimation for Subsea Intervention in Turbid Waters
title_sort 6d pose estimation for subsea intervention in turbid waters
topic subsea
pose estimation
object detection
3D vision
AUV
ROV
url https://www.mdpi.com/2079-9292/10/19/2369
work_keys_str_mv AT ahmedmohammed 6dposeestimationforsubseainterventioninturbidwaters
AT johanneskvam 6dposeestimationforsubseainterventioninturbidwaters
AT jenstthielemann 6dposeestimationforsubseainterventioninturbidwaters
AT karlhhaugholt 6dposeestimationforsubseainterventioninturbidwaters
AT petterrisholm 6dposeestimationforsubseainterventioninturbidwaters