Mechanical, electrical, and adhesive synergies in melt-processed hybrid bio-based TPU nanocomposites

Hybrid nanocomposites (NCs) based on a bio-based thermoplastic polyurethane (TPU) with multi-walled carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) as nanofillers, were obtained using a simple melt-mixing method. The effects of a) the GNP:CNT ratio, b) the total nanofiller content, and c)...

Full description

Bibliographic Details
Main Authors: N. Aranburu, I. Otaegi, G. Guerrica-Echevarria
Format: Article
Language:English
Published: Elsevier 2023-07-01
Series:Polymer Testing
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0142941823001484
_version_ 1797802224049455104
author N. Aranburu
I. Otaegi
G. Guerrica-Echevarria
author_facet N. Aranburu
I. Otaegi
G. Guerrica-Echevarria
author_sort N. Aranburu
collection DOAJ
description Hybrid nanocomposites (NCs) based on a bio-based thermoplastic polyurethane (TPU) with multi-walled carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) as nanofillers, were obtained using a simple melt-mixing method. The effects of a) the GNP:CNT ratio, b) the total nanofiller content, and c) the aspect ratio of the CNTs on both the nanostructure and the thermal, electrical, mechanical, and adhesive properties of the NCs were studied in depth. Synergies were observed in the mechanical and electrical properties of the hybrid NCs when compared to the corresponding binary TPU/GNP and TPU/CNT NCs, regardless of either the GNP:CNT ratio or the aspect ratio of the CNTs. This was attributed to the enhanced dispersion of the GNPs in the presence of CNTs, caused by the intercalation of the two-dimensional graphene nanoplatelets among the one-dimensional carbon nanotubes. Consequently, the resulting conductive network was more efficient, and the reinforcing efficiency of the single nanofillers was improved. The findings of our study show that electrically conductive NCs with improved mechanical properties were achieved when part of the CNTs in the formulation was replaced by cheaper GNPs. Furthermore, a synergy was also observed in the adhesive properties of the hybrid NCs through their significantly higher lap shear strength than that of the pure TPU or binary reference NCs. In other words, by replacing part of the CNTs with GNPs, we were able to obtain hybrid TPU NCs which were cheaper, more effective, and higher performing than binary TPU/CNT and TPU/GNP NCs, pointing to their potential use as electrically conductive hot-melt adhesives.
first_indexed 2024-03-13T05:02:51Z
format Article
id doaj.art-230cd3648a9f41498d2656fd0f753967
institution Directory Open Access Journal
issn 0142-9418
language English
last_indexed 2024-03-13T05:02:51Z
publishDate 2023-07-01
publisher Elsevier
record_format Article
series Polymer Testing
spelling doaj.art-230cd3648a9f41498d2656fd0f7539672023-06-17T05:17:32ZengElsevierPolymer Testing0142-94182023-07-01124108068Mechanical, electrical, and adhesive synergies in melt-processed hybrid bio-based TPU nanocompositesN. Aranburu0I. Otaegi1G. Guerrica-Echevarria2POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastian, 20018, Gipuzkoa, SpainPOLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastian, 20018, Gipuzkoa, SpainCorresponding author.; POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastian, 20018, Gipuzkoa, SpainHybrid nanocomposites (NCs) based on a bio-based thermoplastic polyurethane (TPU) with multi-walled carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) as nanofillers, were obtained using a simple melt-mixing method. The effects of a) the GNP:CNT ratio, b) the total nanofiller content, and c) the aspect ratio of the CNTs on both the nanostructure and the thermal, electrical, mechanical, and adhesive properties of the NCs were studied in depth. Synergies were observed in the mechanical and electrical properties of the hybrid NCs when compared to the corresponding binary TPU/GNP and TPU/CNT NCs, regardless of either the GNP:CNT ratio or the aspect ratio of the CNTs. This was attributed to the enhanced dispersion of the GNPs in the presence of CNTs, caused by the intercalation of the two-dimensional graphene nanoplatelets among the one-dimensional carbon nanotubes. Consequently, the resulting conductive network was more efficient, and the reinforcing efficiency of the single nanofillers was improved. The findings of our study show that electrically conductive NCs with improved mechanical properties were achieved when part of the CNTs in the formulation was replaced by cheaper GNPs. Furthermore, a synergy was also observed in the adhesive properties of the hybrid NCs through their significantly higher lap shear strength than that of the pure TPU or binary reference NCs. In other words, by replacing part of the CNTs with GNPs, we were able to obtain hybrid TPU NCs which were cheaper, more effective, and higher performing than binary TPU/CNT and TPU/GNP NCs, pointing to their potential use as electrically conductive hot-melt adhesives.http://www.sciencedirect.com/science/article/pii/S0142941823001484Polymer nanocompositesMelt processingCarbon nanotubesGraphene nanoplateletsThermoplastic polyurethaneSynergies
spellingShingle N. Aranburu
I. Otaegi
G. Guerrica-Echevarria
Mechanical, electrical, and adhesive synergies in melt-processed hybrid bio-based TPU nanocomposites
Polymer Testing
Polymer nanocomposites
Melt processing
Carbon nanotubes
Graphene nanoplatelets
Thermoplastic polyurethane
Synergies
title Mechanical, electrical, and adhesive synergies in melt-processed hybrid bio-based TPU nanocomposites
title_full Mechanical, electrical, and adhesive synergies in melt-processed hybrid bio-based TPU nanocomposites
title_fullStr Mechanical, electrical, and adhesive synergies in melt-processed hybrid bio-based TPU nanocomposites
title_full_unstemmed Mechanical, electrical, and adhesive synergies in melt-processed hybrid bio-based TPU nanocomposites
title_short Mechanical, electrical, and adhesive synergies in melt-processed hybrid bio-based TPU nanocomposites
title_sort mechanical electrical and adhesive synergies in melt processed hybrid bio based tpu nanocomposites
topic Polymer nanocomposites
Melt processing
Carbon nanotubes
Graphene nanoplatelets
Thermoplastic polyurethane
Synergies
url http://www.sciencedirect.com/science/article/pii/S0142941823001484
work_keys_str_mv AT naranburu mechanicalelectricalandadhesivesynergiesinmeltprocessedhybridbiobasedtpunanocomposites
AT iotaegi mechanicalelectricalandadhesivesynergiesinmeltprocessedhybridbiobasedtpunanocomposites
AT gguerricaechevarria mechanicalelectricalandadhesivesynergiesinmeltprocessedhybridbiobasedtpunanocomposites