A mind in motion: Exercise improves cognitive flexibility, impulsivity and alters dopamine receptor gene expression in a Parkinsonian rat model

Cognitive impairment, particularly deficits in executive function (EF) is common in Parkinson's disease (PD) and may lead to dementia. There are currently no effective treatments for cognitive impairment. Work from our lab and others has shown that physical exercise may improve motor performanc...

Full description

Bibliographic Details
Main Authors: Wang Zhuo, Adam J. Lundquist, Erin K. Donahue, Yumei Guo, Derek Phillips, Giselle M. Petzinger, Michael W. Jakowec, Daniel P. Holschneider
Format: Article
Language:English
Published: Elsevier 2022-01-01
Series:Current Research in Neurobiology
Online Access:http://www.sciencedirect.com/science/article/pii/S2665945X22000122
Description
Summary:Cognitive impairment, particularly deficits in executive function (EF) is common in Parkinson's disease (PD) and may lead to dementia. There are currently no effective treatments for cognitive impairment. Work from our lab and others has shown that physical exercise may improve motor performance in PD but its role in cognitive function remains poorly eludicated. In this study in a rodent model of PD, we sought to examine whether exercise improves cognitive processing and flexibility, important features of EF. Rats received 6-hydroxydopamine lesions of the bilateral striatum (caudate-putamen, CPu), specifically the dorsomedial CPu, a brain region central to EF. Rats were exercised on motorized running wheels or horizontal treadmills for 6–12 weeks. EF-related behaviors including attention and processing, as well as flexibility (inhibition) were evaluated using either an operant 3-choice serial reaction time task (3-CSRT) with rule reversal (3-CSRT-R), or a T-maze task with reversal. Changes in striatal transcript expression of dopamine receptors (Drd1-4) and synaptic proteins (Synaptophysin, PSD-95) were separately examined following 4 weeks of exercise in a subset of rats. Exercise/Lesion rats showed a modest, yet significant improvement in processing-related response accuracy in the 3-CSRT-R and T-maze, as well as a significant improvement in cognitive flexibility as assessed by inhibitory aptitude in the 3-CSRT-R. By four weeks, exercise also elicited increased expression of Drd1, Drd3, Drd4, synaptophysin, and PSD-95 in the dorsomedial and dorsolateral CPu. Our results underscore the observation that exercise, in addition to improving motor function may benefit cognitive performance, specifically EF, and that early changes (by 4 weeks) in CPu dopamine modulation and synaptic connectivity may underlie these benefits.
ISSN:2665-945X