Optimizing the extraction yield of polyprenols from needles of Cunninghamia lanceolata (Lamb.) Hook using response surface methodology and its antioxidative activities

An improved optimization method was used, combining a single-factor experiment and Response Surface Methodology to optimize the medium for the extraction yield of polyprenols from the needles of Cunninghamia lanceolata (Lamb.) Hook. A three-factor, three-level Box-Behnken design was used with extra...

Full description

Bibliographic Details
Main Authors: Ping Jiang, Yang Zhang, Zongxing Shan, Qinghe Zheng
Format: Article
Language:English
Published: North Carolina State University 2013-02-01
Series:BioResources
Subjects:
Online Access:http://www.ncsu.edu/bioresources/BioRes_08/BioRes_08_1_0545_b_Zhang_JSZ_Opt_Extrac_Polyprenols_Needles_RSM_3343.pdf
Description
Summary:An improved optimization method was used, combining a single-factor experiment and Response Surface Methodology to optimize the medium for the extraction yield of polyprenols from the needles of Cunninghamia lanceolata (Lamb.) Hook. A three-factor, three-level Box-Behnken design was used with extraction temperatures, extraction times, and liquid-solid ratio as independent variables to understand and optimize the extraction yield of polyprenols. A mathematical model with a high coefficient of determination was obtained and could be employed to optimize polyprenols extraction. From the optimized values of extraction temperature 71.4 ℃, extraction time 5.96 h, and liquid-solid ratio 9.3:1, the extraction yield of polyprenols was 1.22 ± 0.04% (N = 3), which agreed closely with the predicted value (1.27%). Besides, polyprenols were demonstrated to have a strong antioxidative ability in vitro. Scavenging percentages of superoxide radical and DPPH by polyprenols were up to 75.6% and 56.9%, respectively.
ISSN:1930-2126