Geodesics and Translation Curves in <inline-formula><math display="inline"><semantics><msubsup><mi>Sol</mi><mn>0</mn><mn>4</mn></msubsup></semantics></math></inline-formula>

A translation curve in a Thurston space is a curve such that for given unit vector at the origin, the translation of this vector is tangent to the curve in every point of the curve. In most Thurston spaces, translation curves coincide with geodesic lines. However, this does not hold for Thurston spa...

Full description

Bibliographic Details
Main Author: Zlatko Erjavec
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/6/1533
_version_ 1797610275018375168
author Zlatko Erjavec
author_facet Zlatko Erjavec
author_sort Zlatko Erjavec
collection DOAJ
description A translation curve in a Thurston space is a curve such that for given unit vector at the origin, the translation of this vector is tangent to the curve in every point of the curve. In most Thurston spaces, translation curves coincide with geodesic lines. However, this does not hold for Thurston spaces equipped with twisted product. In these spaces, translation curves seem more intuitive and simpler than geodesics. In this paper, geodesics and translation curves in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>Sol</mi><mn>0</mn><mn>4</mn></msubsup></semantics></math></inline-formula> space are classified and the curvature properties of translation curves are investigated.
first_indexed 2024-03-11T06:13:05Z
format Article
id doaj.art-2321d2665f174ec4a84ba6b1980b87aa
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T06:13:05Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-2321d2665f174ec4a84ba6b1980b87aa2023-11-17T12:29:58ZengMDPI AGMathematics2227-73902023-03-01116153310.3390/math11061533Geodesics and Translation Curves in <inline-formula><math display="inline"><semantics><msubsup><mi>Sol</mi><mn>0</mn><mn>4</mn></msubsup></semantics></math></inline-formula>Zlatko Erjavec0Faculty of Organization and Informatics, University of Zagreb, HR-42000 Varaždin, CroatiaA translation curve in a Thurston space is a curve such that for given unit vector at the origin, the translation of this vector is tangent to the curve in every point of the curve. In most Thurston spaces, translation curves coincide with geodesic lines. However, this does not hold for Thurston spaces equipped with twisted product. In these spaces, translation curves seem more intuitive and simpler than geodesics. In this paper, geodesics and translation curves in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>Sol</mi><mn>0</mn><mn>4</mn></msubsup></semantics></math></inline-formula> space are classified and the curvature properties of translation curves are investigated.https://www.mdpi.com/2227-7390/11/6/1533geodesictranslation curvesolvable Lie group<named-content content-type="equation"><inline-formula> <mml:math id="mm310000"> <mml:semantics> <mml:msubsup> <mml:mi>Sol</mml:mi> <mml:mn>0</mml:mn> <mml:mn>4</mml:mn> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content> space
spellingShingle Zlatko Erjavec
Geodesics and Translation Curves in <inline-formula><math display="inline"><semantics><msubsup><mi>Sol</mi><mn>0</mn><mn>4</mn></msubsup></semantics></math></inline-formula>
Mathematics
geodesic
translation curve
solvable Lie group
<named-content content-type="equation"><inline-formula> <mml:math id="mm310000"> <mml:semantics> <mml:msubsup> <mml:mi>Sol</mml:mi> <mml:mn>0</mml:mn> <mml:mn>4</mml:mn> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content> space
title Geodesics and Translation Curves in <inline-formula><math display="inline"><semantics><msubsup><mi>Sol</mi><mn>0</mn><mn>4</mn></msubsup></semantics></math></inline-formula>
title_full Geodesics and Translation Curves in <inline-formula><math display="inline"><semantics><msubsup><mi>Sol</mi><mn>0</mn><mn>4</mn></msubsup></semantics></math></inline-formula>
title_fullStr Geodesics and Translation Curves in <inline-formula><math display="inline"><semantics><msubsup><mi>Sol</mi><mn>0</mn><mn>4</mn></msubsup></semantics></math></inline-formula>
title_full_unstemmed Geodesics and Translation Curves in <inline-formula><math display="inline"><semantics><msubsup><mi>Sol</mi><mn>0</mn><mn>4</mn></msubsup></semantics></math></inline-formula>
title_short Geodesics and Translation Curves in <inline-formula><math display="inline"><semantics><msubsup><mi>Sol</mi><mn>0</mn><mn>4</mn></msubsup></semantics></math></inline-formula>
title_sort geodesics and translation curves in inline formula math display inline semantics msubsup mi sol mi mn 0 mn mn 4 mn msubsup semantics math inline formula
topic geodesic
translation curve
solvable Lie group
<named-content content-type="equation"><inline-formula> <mml:math id="mm310000"> <mml:semantics> <mml:msubsup> <mml:mi>Sol</mml:mi> <mml:mn>0</mml:mn> <mml:mn>4</mml:mn> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content> space
url https://www.mdpi.com/2227-7390/11/6/1533
work_keys_str_mv AT zlatkoerjavec geodesicsandtranslationcurvesininlineformulamathdisplayinlinesemanticsmsubsupmisolmimn0mnmn4mnmsubsupsemanticsmathinlineformula