Geodesics and Translation Curves in <inline-formula><math display="inline"><semantics><msubsup><mi>Sol</mi><mn>0</mn><mn>4</mn></msubsup></semantics></math></inline-formula>
A translation curve in a Thurston space is a curve such that for given unit vector at the origin, the translation of this vector is tangent to the curve in every point of the curve. In most Thurston spaces, translation curves coincide with geodesic lines. However, this does not hold for Thurston spa...
Main Author: | Zlatko Erjavec |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-03-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/11/6/1533 |
Similar Items
-
On Translation Curves and Geodesics in <inline-formula><math display="inline"><semantics><msubsup><mrow><mi>Sol</mi></mrow><mn>1</mn><mn>4</mn></msubsup></semantics></math></inline-formula>
by: Zlatko Erjavec, et al.
Published: (2023-04-01) -
An Improved Postprocessing Method to Mitigate the Macroscopic Cross-Slice <i>B</i><sub>0</sub> Field Effect on <inline-formula><math display="inline"><semantics><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>*</mi></mrow></msubsup></mrow></semantics></math></inline-formula> Measurements in the Mouse Brain at 7T
by: Chu-Yu Lee, et al.
Published: (2024-07-01) -
Fe<inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="bold">C</mi><mn mathvariant="bold">4</mn></msub><msubsup><mi mathvariant="bold">H</mi><mn mathvariant="bold">2</mn><mrow><mrow><mn mathvariant="bold">2</mn><mo mathvariant="bold">+</mo></mrow></mrow></msubsup></mrow></semantics></math></inline-formula> Encompassing Planar Tetracoordinate Iron: Structure and Bonding Patterns
by: Shilpa Shajan, et al.
Published: (2024-02-01) -
Five Bonds to Carbon through Tri-Coordination in
<inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>Al</mi></mrow><mn>3</mn></msub><msubsup><mi mathvariant="normal">C</mi><mn>3</mn><mrow><mo>−</mo><mo>/</mo><mn>0</mn></mrow></msubsup></mrow></semantics></math></inline-formula>
by: Abdul Hamid Malhan, et al.
Published: (2023-05-01) -
Riemannian Structures on <inline-formula>
<mml:math id="mm1" display="block">
<mml:semantics>
<mml:msubsup>
<mml:mi mathvariant="double-struck">Z</mml:mi>
<mml:mn>2</mml:mn>
<mml:mi>n</mml:mi>
</mml:msubsup>
</mml:semantics>
</mml:math>
</inline-formula>-Manifolds
by: Andrew James Bruce, et al.
Published: (2020-09-01)