Summary: | Rapid urbanization influences the landscape pattern of impervious surfaces, and potentially affects surface water quality. Using ArcGIS and Fragstats, this study analyzed the temporal change of the landscape pattern of impervious surfaces in Shanghai over the past 45 years, and its driving forces and impact on water quality were also analyzed. The results show that both low and high impervious surfaces showed different degrees of expansion, and as a result, the pervious surfaces and water area reduced by 40.1% and 13.8%, respectively. It proves that the fragmentation and diversity of impervious surfaces in Shanghai notably increased in the past decades, and especially the low and high impervious surfaces show substantial changes. The primary driving forces of the landscape pattern change are population density, unit area Gross Domestic Product (GDP), and the percentage of primary industry. The result of Redundancy analysis (RDA) is that the explanatory ability of landscape pattern to water quality variations decreased from 68.7% to 46.4% in the period 2000–2010. It should be stressed that the contribution of the configuration of impervious surfaces to water quality variation is less than that of the percentage of impervious surfaces.
|