Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model

<p>Previous multi-model intercomparisons have shown that chemistry–climate models exhibit significant biases in tropospheric ozone compared with observations. We investigate annual-mean tropospheric column ozone in 15 models participating in the SPARC–IGAC (Stratosphere–troposphere Processe...

Full description

Bibliographic Details
Main Authors: L. E. Revell, A. Stenke, F. Tummon, A. Feinberg, E. Rozanov, T. Peter, N. L. Abraham, H. Akiyoshi, A. T. Archibald, N. Butchart, M. Deushi, P. Jöckel, D. Kinnison, M. Michou, O. Morgenstern, F. M. O'Connor, L. D. Oman, G. Pitari, D. A. Plummer, R. Schofield, K. Stone, S. Tilmes, D. Visioni, Y. Yamashita, G. Zeng
Format: Article
Language:English
Published: Copernicus Publications 2018-11-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/18/16155/2018/acp-18-16155-2018.pdf
_version_ 1819041006995111936
author L. E. Revell
L. E. Revell
L. E. Revell
A. Stenke
F. Tummon
F. Tummon
A. Feinberg
E. Rozanov
E. Rozanov
T. Peter
N. L. Abraham
N. L. Abraham
H. Akiyoshi
A. T. Archibald
A. T. Archibald
N. Butchart
M. Deushi
P. Jöckel
D. Kinnison
M. Michou
O. Morgenstern
F. M. O'Connor
L. D. Oman
G. Pitari
D. A. Plummer
R. Schofield
R. Schofield
K. Stone
K. Stone
K. Stone
S. Tilmes
D. Visioni
D. Visioni
Y. Yamashita
Y. Yamashita
G. Zeng
author_facet L. E. Revell
L. E. Revell
L. E. Revell
A. Stenke
F. Tummon
F. Tummon
A. Feinberg
E. Rozanov
E. Rozanov
T. Peter
N. L. Abraham
N. L. Abraham
H. Akiyoshi
A. T. Archibald
A. T. Archibald
N. Butchart
M. Deushi
P. Jöckel
D. Kinnison
M. Michou
O. Morgenstern
F. M. O'Connor
L. D. Oman
G. Pitari
D. A. Plummer
R. Schofield
R. Schofield
K. Stone
K. Stone
K. Stone
S. Tilmes
D. Visioni
D. Visioni
Y. Yamashita
Y. Yamashita
G. Zeng
author_sort L. E. Revell
collection DOAJ
description <p>Previous multi-model intercomparisons have shown that chemistry–climate models exhibit significant biases in tropospheric ozone compared with observations. We investigate annual-mean tropospheric column ozone in 15 models participating in the SPARC–IGAC (Stratosphere–troposphere Processes And their Role in Climate–International Global Atmospheric Chemistry) Chemistry-Climate Model Initiative (CCMI). These models exhibit a positive bias, on average, of up to 40&thinsp;%–50&thinsp;% in the Northern Hemisphere compared with observations derived from the Ozone Monitoring Instrument and Microwave Limb Sounder (OMI/MLS), and a negative bias of up to  ∼ 30&thinsp;% in the Southern Hemisphere. SOCOLv3.0 (version 3 of the Solar-Climate Ozone Links CCM), which participated in CCMI, simulates global-mean tropospheric ozone columns of 40.2&thinsp;DU – approximately 33&thinsp;% larger than the CCMI multi-model mean. Here we introduce an updated version of SOCOLv3.0, <q>SOCOLv3.1</q>, which includes an improved treatment of ozone sink processes, and results in a reduction in the tropospheric column ozone bias of up to 8&thinsp;DU, mostly due to the inclusion of N<sub>2</sub>O<sub>5</sub> hydrolysis on tropospheric aerosols. As a result of these developments, tropospheric column ozone amounts simulated by SOCOLv3.1 are comparable with several other CCMI models. We apply Gaussian process emulation and sensitivity analysis to understand the remaining ozone bias in SOCOLv3.1. This shows that ozone precursors (nitrogen oxides (NO<sub><i>x</i></sub>), carbon monoxide, methane and other volatile organic compounds, VOCs) are responsible for more than 90&thinsp;% of the variance in tropospheric ozone. However, it may not be the emissions inventories themselves that result in the bias, but how the emissions are handled in SOCOLv3.1, and we discuss this in the wider context of the other CCMI models. Given that the emissions data set to be used for phase 6 of the Coupled Model Intercomparison Project includes approximately 20&thinsp;% more NO<sub><i>x</i></sub> than the data set used for CCMI, further work is urgently needed to address the challenges of simulating sub-grid processes of importance to tropospheric ozone in the current generation of chemistry–climate models.</p>
first_indexed 2024-12-21T09:18:08Z
format Article
id doaj.art-2339ba77581f497d91767aa260bff63c
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-21T09:18:08Z
publishDate 2018-11-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-2339ba77581f497d91767aa260bff63c2022-12-21T19:09:05ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-11-0118161551617210.5194/acp-18-16155-2018Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate modelL. E. Revell0L. E. Revell1L. E. Revell2A. Stenke3F. Tummon4F. Tummon5A. Feinberg6E. Rozanov7E. Rozanov8T. Peter9N. L. Abraham10N. L. Abraham11H. Akiyoshi12A. T. Archibald13A. T. Archibald14N. Butchart15M. Deushi16P. Jöckel17D. Kinnison18M. Michou19O. Morgenstern20F. M. O'Connor21L. D. Oman22G. Pitari23D. A. Plummer24R. Schofield25R. Schofield26K. Stone27K. Stone28K. Stone29S. Tilmes30D. Visioni31D. Visioni32Y. Yamashita33Y. Yamashita34G. Zeng35School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New ZealandInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, SwitzerlandBodeker Scientific, Christchurch, New ZealandInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, SwitzerlandInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerlandnow at: Biosciences, Fisheries, and Economics Faculty, University of Tromsø, Tromsø, NorwayInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, SwitzerlandInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, SwitzerlandPhysical-Meteorological Observatory/World Radiation Center, Davos, SwitzerlandInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, SwitzerlandDepartment of Chemistry, University of Cambridge, Cambridge, UKNational Centre for Atmospheric Science (NCAS), Cambridge, UKNational Institute of Environmental Studies (NIES), Tsukuba, JapanDepartment of Chemistry, University of Cambridge, Cambridge, UKNational Centre for Atmospheric Science (NCAS), Cambridge, UKMet Office Hadley Centre (MOHC), Exeter, UKMeteorological Research Institute (MRI), Tsukuba, JapanInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyNational Center for Atmospheric Research (NCAR), Boulder, Colorado, USACNRM UMR 3589, Météo-France/CNRS, Toulouse, FranceNational Institute of Water and Atmospheric Research (NIWA), Wellington, New ZealandMet Office Hadley Centre (MOHC), Exeter, UKNational Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC), Greenbelt, Maryland, USADepartment of Physical and Chemical Sciences, Universitá dell'Aquila, L'Aquila, ItalyEnvironment and Climate Change Canada, Montréal, CanadaSchool of Earth Sciences, University of Melbourne, Melbourne, Victoria, AustraliaARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, AustraliaSchool of Earth Sciences, University of Melbourne, Melbourne, Victoria, AustraliaARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, Australianow at: Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USANational Center for Atmospheric Research (NCAR), Boulder, Colorado, USADepartment of Physical and Chemical Sciences, Universitá dell'Aquila, L'Aquila, Italynow at: Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USANational Institute of Environmental Studies (NIES), Tsukuba, Japannow at: Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, JapanNational Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand<p>Previous multi-model intercomparisons have shown that chemistry–climate models exhibit significant biases in tropospheric ozone compared with observations. We investigate annual-mean tropospheric column ozone in 15 models participating in the SPARC–IGAC (Stratosphere–troposphere Processes And their Role in Climate–International Global Atmospheric Chemistry) Chemistry-Climate Model Initiative (CCMI). These models exhibit a positive bias, on average, of up to 40&thinsp;%–50&thinsp;% in the Northern Hemisphere compared with observations derived from the Ozone Monitoring Instrument and Microwave Limb Sounder (OMI/MLS), and a negative bias of up to  ∼ 30&thinsp;% in the Southern Hemisphere. SOCOLv3.0 (version 3 of the Solar-Climate Ozone Links CCM), which participated in CCMI, simulates global-mean tropospheric ozone columns of 40.2&thinsp;DU – approximately 33&thinsp;% larger than the CCMI multi-model mean. Here we introduce an updated version of SOCOLv3.0, <q>SOCOLv3.1</q>, which includes an improved treatment of ozone sink processes, and results in a reduction in the tropospheric column ozone bias of up to 8&thinsp;DU, mostly due to the inclusion of N<sub>2</sub>O<sub>5</sub> hydrolysis on tropospheric aerosols. As a result of these developments, tropospheric column ozone amounts simulated by SOCOLv3.1 are comparable with several other CCMI models. We apply Gaussian process emulation and sensitivity analysis to understand the remaining ozone bias in SOCOLv3.1. This shows that ozone precursors (nitrogen oxides (NO<sub><i>x</i></sub>), carbon monoxide, methane and other volatile organic compounds, VOCs) are responsible for more than 90&thinsp;% of the variance in tropospheric ozone. However, it may not be the emissions inventories themselves that result in the bias, but how the emissions are handled in SOCOLv3.1, and we discuss this in the wider context of the other CCMI models. Given that the emissions data set to be used for phase 6 of the Coupled Model Intercomparison Project includes approximately 20&thinsp;% more NO<sub><i>x</i></sub> than the data set used for CCMI, further work is urgently needed to address the challenges of simulating sub-grid processes of importance to tropospheric ozone in the current generation of chemistry–climate models.</p>https://www.atmos-chem-phys.net/18/16155/2018/acp-18-16155-2018.pdf
spellingShingle L. E. Revell
L. E. Revell
L. E. Revell
A. Stenke
F. Tummon
F. Tummon
A. Feinberg
E. Rozanov
E. Rozanov
T. Peter
N. L. Abraham
N. L. Abraham
H. Akiyoshi
A. T. Archibald
A. T. Archibald
N. Butchart
M. Deushi
P. Jöckel
D. Kinnison
M. Michou
O. Morgenstern
F. M. O'Connor
L. D. Oman
G. Pitari
D. A. Plummer
R. Schofield
R. Schofield
K. Stone
K. Stone
K. Stone
S. Tilmes
D. Visioni
D. Visioni
Y. Yamashita
Y. Yamashita
G. Zeng
Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model
Atmospheric Chemistry and Physics
title Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model
title_full Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model
title_fullStr Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model
title_full_unstemmed Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model
title_short Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model
title_sort tropospheric ozone in ccmi models and gaussian process emulation to understand biases in the socolv3 chemistry climate model
url https://www.atmos-chem-phys.net/18/16155/2018/acp-18-16155-2018.pdf
work_keys_str_mv AT lerevell troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT lerevell troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT lerevell troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT astenke troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT ftummon troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT ftummon troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT afeinberg troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT erozanov troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT erozanov troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT tpeter troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT nlabraham troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT nlabraham troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT hakiyoshi troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT atarchibald troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT atarchibald troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT nbutchart troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT mdeushi troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT pjockel troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT dkinnison troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT mmichou troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT omorgenstern troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT fmoconnor troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT ldoman troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT gpitari troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT daplummer troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT rschofield troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT rschofield troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT kstone troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT kstone troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT kstone troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT stilmes troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT dvisioni troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT dvisioni troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT yyamashita troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT yyamashita troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel
AT gzeng troposphericozoneinccmimodelsandgaussianprocessemulationtounderstandbiasesinthesocolv3chemistryclimatemodel