Complete decomposition of the generalized quaternion groups

Let GG be a finite nonabelian group. For any integer m≥2m\ge 2, let A1,…,Am{A}_{1},\ldots ,{A}_{m} be nonempty subsets of GG. If A1,…,Am{A}_{1},\ldots ,{A}_{m} are mutually disjoint and if the subset product A1…Am={α1…αm∣αv∈Av,v=1,2,…,m}{A}_{1}\ldots {A}_{m}=\left\{{\alpha }_{1}\ldots {\alpha }_{m}|...

Full description

Bibliographic Details
Main Authors: Chen Huey Voon, Sin Chang Seng
Format: Article
Language:English
Published: De Gruyter 2023-09-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2023-0111
_version_ 1797688799692587008
author Chen Huey Voon
Sin Chang Seng
author_facet Chen Huey Voon
Sin Chang Seng
author_sort Chen Huey Voon
collection DOAJ
description Let GG be a finite nonabelian group. For any integer m≥2m\ge 2, let A1,…,Am{A}_{1},\ldots ,{A}_{m} be nonempty subsets of GG. If A1,…,Am{A}_{1},\ldots ,{A}_{m} are mutually disjoint and if the subset product A1…Am={α1…αm∣αv∈Av,v=1,2,…,m}{A}_{1}\ldots {A}_{m}=\left\{{\alpha }_{1}\ldots {\alpha }_{m}| {\alpha }_{v}\in {A}_{v},v=1,2,\ldots ,m\right\} coincides with GG, then (A1,…,Am)\left({A}_{1},\ldots ,{A}_{m}) is called a complete decomposition of GG of order mm. In this article, we let GG be the generalized quaternion groups Q2n{Q}_{{2}^{n}}, which is a finite nonabelian group of order 2n{2}^{n} with group presentation given by ⟨x,y∣x2n−1=1,y2=x2n−2,yx=x2n−1−1y⟩\langle x,y| {x}^{{2}^{n-1}}=1,{y}^{2}={x}^{{2}^{n-2}},yx={x}^{{2}^{n-1}-1}y\rangle for positive integer n≥3n\ge 3. We determine the existence of complete decompositions of Q2n{Q}_{{2}^{n}} of order kk, for k∈{2,3,…,2n−1}k\in \left\{2,3,\ldots ,{2}^{n-1}\right\}, and show that Q2n{Q}_{{2}^{n}} can be written in the product of 2n−1{2}^{n-1} subsets, i.e., Q2n=A1A2⋯A2n−1{Q}_{{2}^{n}}={A}_{1}{A}_{2}\cdots {A}_{{2}^{n-1}}, where ∣Aj∣=2| {A}_{j}| =2, for j∈{1,2,…,2n−1}j\in \left\{1,2,\ldots ,{2}^{n-1}\right\}. In addition, we construct the non-complete decomposition of Q2n{Q}_{{2}^{n}} of order kk, for k∈{2,3,…,2n−1}k\in \left\{2,3,\ldots ,{2}^{n-1}\right\}, using the non-exhaustive subsets of Q2n{Q}_{2n}.
first_indexed 2024-03-12T01:35:55Z
format Article
id doaj.art-233e6869770b47d4921d2b8954680b3d
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-03-12T01:35:55Z
publishDate 2023-09-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-233e6869770b47d4921d2b8954680b3d2023-09-11T07:00:02ZengDe GruyterOpen Mathematics2391-54552023-09-01211396310.1515/math-2023-0111Complete decomposition of the generalized quaternion groupsChen Huey Voon0Sin Chang Seng1Mathematical and Actuarial Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, MalaysiaSchool of Foundation Studies, Xiamen University, Sepang, MalaysiaLet GG be a finite nonabelian group. For any integer m≥2m\ge 2, let A1,…,Am{A}_{1},\ldots ,{A}_{m} be nonempty subsets of GG. If A1,…,Am{A}_{1},\ldots ,{A}_{m} are mutually disjoint and if the subset product A1…Am={α1…αm∣αv∈Av,v=1,2,…,m}{A}_{1}\ldots {A}_{m}=\left\{{\alpha }_{1}\ldots {\alpha }_{m}| {\alpha }_{v}\in {A}_{v},v=1,2,\ldots ,m\right\} coincides with GG, then (A1,…,Am)\left({A}_{1},\ldots ,{A}_{m}) is called a complete decomposition of GG of order mm. In this article, we let GG be the generalized quaternion groups Q2n{Q}_{{2}^{n}}, which is a finite nonabelian group of order 2n{2}^{n} with group presentation given by ⟨x,y∣x2n−1=1,y2=x2n−2,yx=x2n−1−1y⟩\langle x,y| {x}^{{2}^{n-1}}=1,{y}^{2}={x}^{{2}^{n-2}},yx={x}^{{2}^{n-1}-1}y\rangle for positive integer n≥3n\ge 3. We determine the existence of complete decompositions of Q2n{Q}_{{2}^{n}} of order kk, for k∈{2,3,…,2n−1}k\in \left\{2,3,\ldots ,{2}^{n-1}\right\}, and show that Q2n{Q}_{{2}^{n}} can be written in the product of 2n−1{2}^{n-1} subsets, i.e., Q2n=A1A2⋯A2n−1{Q}_{{2}^{n}}={A}_{1}{A}_{2}\cdots {A}_{{2}^{n-1}}, where ∣Aj∣=2| {A}_{j}| =2, for j∈{1,2,…,2n−1}j\in \left\{1,2,\ldots ,{2}^{n-1}\right\}. In addition, we construct the non-complete decomposition of Q2n{Q}_{{2}^{n}} of order kk, for k∈{2,3,…,2n−1}k\in \left\{2,3,\ldots ,{2}^{n-1}\right\}, using the non-exhaustive subsets of Q2n{Q}_{2n}.https://doi.org/10.1515/math-2023-0111generalized quaternion groupscomplete decompositionsubsets product05a1820d60
spellingShingle Chen Huey Voon
Sin Chang Seng
Complete decomposition of the generalized quaternion groups
Open Mathematics
generalized quaternion groups
complete decomposition
subsets product
05a18
20d60
title Complete decomposition of the generalized quaternion groups
title_full Complete decomposition of the generalized quaternion groups
title_fullStr Complete decomposition of the generalized quaternion groups
title_full_unstemmed Complete decomposition of the generalized quaternion groups
title_short Complete decomposition of the generalized quaternion groups
title_sort complete decomposition of the generalized quaternion groups
topic generalized quaternion groups
complete decomposition
subsets product
05a18
20d60
url https://doi.org/10.1515/math-2023-0111
work_keys_str_mv AT chenhueyvoon completedecompositionofthegeneralizedquaterniongroups
AT sinchangseng completedecompositionofthegeneralizedquaterniongroups