A Cotangent Fractional Derivative with the Application

In this work, we present a new type of fractional derivatives (FD) involving exponential cotangent function in their kernels called Riemann–Liouville <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi&...

Full description

Bibliographic Details
Main Author: Lakhlifa Sadek
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/6/444
_version_ 1827737229405978624
author Lakhlifa Sadek
author_facet Lakhlifa Sadek
author_sort Lakhlifa Sadek
collection DOAJ
description In this work, we present a new type of fractional derivatives (FD) involving exponential cotangent function in their kernels called Riemann–Liouville <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>D</mi><mrow><mi>σ</mi><mo>,</mo><mi>γ</mi></mrow></msup></semantics></math></inline-formula> and Caputo cotangent fractional derivatives <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mi>C</mi></msup><msup><mi>D</mi><mrow><mi>σ</mi><mo>,</mo><mi>γ</mi></mrow></msup></mrow></semantics></math></inline-formula>, respectively, and their corresponding integral <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>I</mi><mrow><mi>σ</mi><mo>,</mo><mi>γ</mi></mrow></msup></semantics></math></inline-formula>. The advantage of the new fractional derivatives is that they achieve a semi-group property, and we have special cases; if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>γ</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> we obtain the Riemann–Liouville FD (RL-FD), Caputo FD (C-FD), and Riemann–Liouville fractional integral (RL-FI). We give some theorems and lemmas, and we give solutions to linear cotangent fractional differential equations using the Laplace transform of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>D</mi><mrow><mi>σ</mi><mo>,</mo><mi>γ</mi></mrow></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mi>C</mi></msup><msup><mi>D</mi><mrow><mi>σ</mi><mo>,</mo><mi>γ</mi></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>I</mi><mrow><mi>σ</mi><mo>,</mo><mi>γ</mi></mrow></msup></semantics></math></inline-formula>. Finally, we give the application of this new type on the SIR model. This new type of fractional calculus can help other researchers who still work on the actual subject.
first_indexed 2024-03-11T02:27:16Z
format Article
id doaj.art-2363b68e27bd4b748571fc76f087e9cb
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-11T02:27:16Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-2363b68e27bd4b748571fc76f087e9cb2023-11-18T10:29:22ZengMDPI AGFractal and Fractional2504-31102023-05-017644410.3390/fractalfract7060444A Cotangent Fractional Derivative with the ApplicationLakhlifa Sadek0Department of Mathematics, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, MoroccoIn this work, we present a new type of fractional derivatives (FD) involving exponential cotangent function in their kernels called Riemann–Liouville <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>D</mi><mrow><mi>σ</mi><mo>,</mo><mi>γ</mi></mrow></msup></semantics></math></inline-formula> and Caputo cotangent fractional derivatives <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mi>C</mi></msup><msup><mi>D</mi><mrow><mi>σ</mi><mo>,</mo><mi>γ</mi></mrow></msup></mrow></semantics></math></inline-formula>, respectively, and their corresponding integral <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>I</mi><mrow><mi>σ</mi><mo>,</mo><mi>γ</mi></mrow></msup></semantics></math></inline-formula>. The advantage of the new fractional derivatives is that they achieve a semi-group property, and we have special cases; if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>γ</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> we obtain the Riemann–Liouville FD (RL-FD), Caputo FD (C-FD), and Riemann–Liouville fractional integral (RL-FI). We give some theorems and lemmas, and we give solutions to linear cotangent fractional differential equations using the Laplace transform of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>D</mi><mrow><mi>σ</mi><mo>,</mo><mi>γ</mi></mrow></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mi>C</mi></msup><msup><mi>D</mi><mrow><mi>σ</mi><mo>,</mo><mi>γ</mi></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>I</mi><mrow><mi>σ</mi><mo>,</mo><mi>γ</mi></mrow></msup></semantics></math></inline-formula>. Finally, we give the application of this new type on the SIR model. This new type of fractional calculus can help other researchers who still work on the actual subject.https://www.mdpi.com/2504-3110/7/6/444cotangent fractional integralcotangent fractional derivativeRiemann–Liouville cotangent fractional derivativeCaputo cotangent fractional derivative
spellingShingle Lakhlifa Sadek
A Cotangent Fractional Derivative with the Application
Fractal and Fractional
cotangent fractional integral
cotangent fractional derivative
Riemann–Liouville cotangent fractional derivative
Caputo cotangent fractional derivative
title A Cotangent Fractional Derivative with the Application
title_full A Cotangent Fractional Derivative with the Application
title_fullStr A Cotangent Fractional Derivative with the Application
title_full_unstemmed A Cotangent Fractional Derivative with the Application
title_short A Cotangent Fractional Derivative with the Application
title_sort cotangent fractional derivative with the application
topic cotangent fractional integral
cotangent fractional derivative
Riemann–Liouville cotangent fractional derivative
Caputo cotangent fractional derivative
url https://www.mdpi.com/2504-3110/7/6/444
work_keys_str_mv AT lakhlifasadek acotangentfractionalderivativewiththeapplication
AT lakhlifasadek cotangentfractionalderivativewiththeapplication